scholarly journals SAT0298 IS INTERLEUKIN 6 A FACTOR OF FIBROGENESIS IN DERMAL FIBROBLASTS?

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1094.1-1094
Author(s):  
A. S. Siebuhr ◽  
P. Juhl ◽  
M. Karsdal ◽  
A. C. Bay-Jensen

Background:Interleukin 6 (IL-6) is known to have both pro- and anti-inflammatory properties, depending on the receptor activation. The classical IL-6 signaling via the membrane bound receptor is mainly anti-inflammatory, whereas signaling through the soluble receptor (sIL-6R) is pro-inflammatory/pro-fibrotic. However, the direct fibrotic effect of IL-6 stimulation on dermal fibroblasts is unknown.Objectives:We investigated the fibrotic effect of IL-6 + sIL-6R in a dermal fibroblast model and assessed fibrosis by neo-epitope biomarkers of extracellular matrix proteins.Methods:Primary healthy human dermal fibroblasts were grown for up to 17 days in DMEM medium with 0.4% fetal calf serum, ficoll (to produce a crowded environment) and ascorbic acid. IL-6 [1-90 nM]+sIL-6R [0.1-9 nM] alone or in combination with TGFβ [1 nM] were tested in three different donors. TGFβ [1 nM], PDGF-AB [3 nM] and non-stimulated cells (w/o) were used as controls. Tocilizumab (TCZ) with TGFβ + IL-6 + sIL-6R stimulation was tested in one donor. Collagen type I, III and VI formation (PRO-C1, PRO-C3 and PRO-C6) and fibronectin (FBN-C) were evaluated by validated ELISAs (Nordic Bioscience). Western blot analysis investigated signal cascades. Gene expression of selected ECM proteins was analyzed. Statistical analyses included One-way and 2-way ANOVA and area under the curve analysis.Results:formation by the end of the culture period. The fibronectin and collagen type VI signal were consistent between the three tested donors, whereas the formation of type III collagen was only increased in one donor, but in several trials. Type I collagen formation was unchanged by IL-6 + sIL-6R stimulation. The gene expression of type I collagen was induced by IL-6 + sIL-6R. Western blot analysis validated trans-signaling by the IL-6+sIL-6R stimulation as expected.IL-6 + sIL-6R stimulation in combination with TGFβ decreased fibronectin levels compared to TGFβ alone but did not reach the level of unstimulated fibroblasts. The formation of collagen type IV was generally unchanged with IL-6 + sIL-6R + TGFβ compared to TGFβ alone. Collagen type I and III formation was more scattered in the signals when IL-6 + sIL-6R was in combination with TGFβ, as the biomarker level could be either decreased or increased compared to TGFβ alone. In two studies the type I collagen level was synergistic increased by IL-6 + sIL-6R + TGFβ, whereas another study found the level to be decreased compared to TGFβ alone. The gene expression of fibronectin and type I collagen was increased with TGFβ +IL-6+sIL-6R compared to TGFβ alone.Inhibition of IL-6R by TCZ in combination with IL-6 + sIL-6R did only decrease the fibronectin level with the lowest TCZ concentration (p=0.03). TCZ alone decreased the fibronectin level in a dose-dependent manner (One-way ANOVA p=0.0002).Conclusion:We investigated the fibrotic response of dermal fibroblasts to IL-6 + sIL-6R stimulation. IL-6 modulated the fibronectin level and modulated the collagen type III formation level in a somewhat dose-dependent manner. In combination with TGFβ, IL-6 decreased collagen type I and IV formation and fibronectin. However, in this study inhibition of IL-6R by TCZ did not change the fibrotic response of the dermal fibroblasts. This study indicated that IL-6 did not induce collagen formation in dermal fibroblasts, except type III collagen formation with high IL-6 concentration.Figure:Disclosure of Interests:Anne Sofie Siebuhr Employee of: Nordic Bioscience, Pernille Juhl Employee of: Nordic Bioscience, Morten Karsdal Shareholder of: Nordic Bioscience A/S., Employee of: Full time employee at Nordic Bioscience A/S., Anne-Christine Bay-Jensen Shareholder of: Nordic Bioscience A/S, Employee of: Full time employee at Nordic Bioscience A/S.

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1383.1-1384
Author(s):  
A. S. Siebuhr ◽  
M. Karsdal ◽  
P. Juhl ◽  
A. C. Bay-Jensen

Background:Dermal fibroblasts are responsible for the excessive extracellular matrix (ECM) formation observed in the skin of systemic sclerosis (SSc) patients and fibroblasts are therefore an obvious target for anti-fibrotic treatments. TGFβ, PDGF and IL-6 are known to be central cytokines in systemic sclerosis. Nintedanib, a tyrosine-kinase inhibitor approved for treatment of idiopathic pulmonary fibrosis, did not show effect on dermal fibrosis only on pulmonary fibrosis in SSc patients with interstitial lung disease (ILD). Tofacitinib, as Pan JAK inhibitor, has shown to inhibit dermal fibrosis in mouse models and shown positive indications in patients.Objectives:We investigated the direct effect of Nintedanib and Tofacitinib on ECM production from human dermal fibroblast using translational biomarkers of type I, III and VI collagens and fibronectin.Methods:Primary healthy human dermal fibroblasts were grown in DMEM media containing 0.4% fetal calf serum, Ficoll (to produce a crowded environment) and ascorbic acid for up to 17 days. The cells were stimulated with PDGF [3 nM] and/or TGFβ [1 nM] in combination with Nintedanib [1 nM-10 μM] treatment initiated at day 0 or 7 or Tofacitinib [3-100 nM] treatment initiated at culture start together. Media and treatments were changed twice a week. Non-activated cells (w/o) were used as control. Type I, III and VI collagen formation (PRO-C1, PRO-C3 and PRO-C6, respectively) and fibronectin (FBN-C) were evaluated by validated ELISAs (Nordic Bioscience). Statistical analysis included 1-way and 2-way ANOVA, AUC and Mann-Whitney U-test.Results:PDGF significantly increased collagen type III and VI formation and collagen type I formation minimally. PDGF did not induce changes in fibronectin levels. TGFβ increased collagen type I and VI formation but did not induce formation of collagen type III. TGFβ increased fibronectin levels, where PDGF did not.Nintedanib (≥100 nM) added either from day 0 or 7 reduced PDGF induced collagen type III and VI formation to the levels of w/o throughout the remainder of the study. In TGFβ treated fibroblasts, Nintedanib added either from day 0 or 7 reduced collagen type I and VI formation. The fibronectin levels were dose-dependently reduced by Nintedanib. The biomarker levels were at study end at the level of w/o. Nintedanib at a concentration of 1 uM and higher significantly decreased the biomarker levels. Nintedanib (≥100 nM) in fibroblasts stimulated with both TGFβ and PDGF significantly reduced collagen type I, III and VI collagen and fibronectin.A Tofacitinib concentration of 100 nM was toxic to the dermal fibroblasts as the cell viability was minimal at culture end. However, the viability of Tofacitinib (100 nM) in combination with TGFβ was decreased at study end, but only to half the viability of untreated cells. Tofacitinib dose-dependently decreased the TGFβ induced type I and III collagen formation and fibronectin in the dermal fibroblasts. Tofacitinib (100 nM) decreased the level of collagen type I and III formation to the level of w/o, where as the level of fibronectin was lowered by 80 % of TGFβ. Tofacitinib as low as 12.5 nM significantly lowered the collagen type I formation and fibronectin (both p<0.05) and Tofacitinib of 25 nM decreased collagen type III formation significantly (p<0.0001).Conclusion:Tofacitinib decreased the formation of the collagens and fibronectin. Nintedanib inhibited ECM production differently in PDGF and TGFβ induced dermal fibroblast, but in the combination of TGFβ and PDGF Nintedanib significantly decreased the ongoing fibrosis. In PDGF induced fibrosis, Nintedanib acted as an on-off switch, whereas the inhibition was dose-dependent in TGFβ induced fibrosis. This cell study indicates that Nintedanib and Tofacitinib inhibits collagen production in dermal fibroblasts.Figure:Disclosure of Interests:Anne Sofie Siebuhr Employee of: Nordic Bioscience, Morten Karsdal Shareholder of: Nordic Bioscience A/S., Employee of: Full time employee at Nordic Bioscience A/S., Pernille Juhl Employee of: Nordic Bioscience, Anne-Christine Bay-Jensen Shareholder of: Nordic Bioscience A/S, Employee of: Full time employee at Nordic Bioscience A/S.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1094.2-1095
Author(s):  
A. S. Siebuhr ◽  
S. F. Madsen ◽  
M. Karsdal ◽  
A. C. Bay-Jensen ◽  
P. Juhl

Background:Systemic sclerosis has vascular, inflammatory and fibrotic components, which may be associated with different growth factors and cytokines. Platelet derived growth factor (PDGF) is associated with the vasculature, whereas tumor necrosis factor beta (TGFβ) is associated with inflammation and fibrosis. We have developed a fibroblast model system of dermal fibrosis for anti-fibrotic drugs testing, but the effect of the fibroblasts mechanistic properties are unknown.Objectives:We investigated different mechanical capacities of PDGF and TGFβ treated human healthy dermal fibroblasts in the SiaJ setting.Methods:Primary human healthy dermal fibroblasts were grown in DMEM medium containing 0.4% fetal calf serum, ficoll (to produce a crowded environment) and ascorbic acid for up to 17 days. A wound was induced by scratching the cells at 0, 1, 3 or 7 days after treatment initiation. Wound closure was followed for 3 days. Contraction capacity was tested by creating gels of human fibroblasts produced collagens containing dermal fibroblasts and contraction was assessed at day 2 by calculating the percentage of gel size to total well size. Collagen type I, III and VI formation (PRO-C1, PRO-C3 and PRO-C6) and fibronectin (FBN-C) were evaluated by validated ELISAs (Nordic Bioscience). Gene expression was analyzed after 2 days in culture. Statistical analyses included One-way ANOVA and student’s t-test.Results:Generally, PDGF closed the wound in half the time of w/o and TGFβ, when treatment and cells are added concurrently or scratched one day after treatment initiation. When treatments were added 3 or 7 days prior to scratch, the cells treated with PDGF had proliferated to a higher degree than w/o and TGFβ. A consequence of this, was that when cells were scratch the sheet of cells produced was lifted from the bottom and fold over itself, leaving a much greater scratch than in the other treatments. However, despite this increased gap the PDGF treated cells closed the wound at the same time as w/o and TGFβ, confirming the results of the cells scratched at day 0 and 1.Inhibition of contraction by ML-7 of otherwise untreated cells inhibited contraction significantly compared to untreated cells alone (p=0.0009). Contraction was increased in both TGFβ and PDGF treated cells compared to untreated cells (both p<0.0001). TGFβ+ ML-7 inhibited the contraction to the level of w/o (p=0.0024), which was only 35% of ML-7 alone. In the contraction study the cells were terminated after 2 days of culture, thus prior to when biomarker of ECM remodeling is usually assessed. However, FBN-C was detectable and a significant release of fibronectin by TGFβ and PDGF compared to w/o was found in the supernatant (both p<0.0001). The gene expression of FBN was only increased with TGFβ (p<0.05) and not PDGF. ML-7 alone tended to decrease FBN-C and in combination with TGFβ the FBN level was significantly decreased compared to TGFβ alone (p<0.0001). However, the level of TGFβ+ML-7 was significantly higher than ML-7 alone (p=0.038).TGFβ increased the gene expression of most genes assessed, except Col6a1. PDGF increased the gene expression of Col3a1, Col5a1 and Col6a1 above the critical fold change of 2, but only significantly in Col5a1 and Col6a1 (both p<0.05).Conclusion:This study demonstrates that TGFβ and PDGF have different mechanical capacities in human healthy dermal fibroblasts; TGFβ increased gene expression of ECM related genes, such as collagens and have increased FBN release in the supernatant already 2 days after initial treatment. PDGF has increased contraction, proliferation and migratory capacities and less expression of ECM related genes and proteins.Disclosure of Interests:Anne Sofie Siebuhr Employee of: Nordic Bioscience, Sofie Falkenløve Madsen: None declared, Morten Karsdal Shareholder of: Nordic Bioscience A/S., Employee of: Full time employee at Nordic Bioscience A/S., Anne-Christine Bay-Jensen Shareholder of: Nordic Bioscience A/S, Employee of: Full time employee at Nordic Bioscience A/S., Pernille Juhl Employee of: Nordic Bioscience


1991 ◽  
Vol 278 (3) ◽  
pp. 863-869 ◽  
Author(s):  
E M L Tan ◽  
J Peltonen

Keloids are benign cutaneous tumours characterized by excess deposition of collagen, specifically type I collagen. We report here that collagen biosynthesis, as measured by hydroxyproline synthesis, was markedly inhibited by 65-80% by the combination of endothelial cell growth factor (ECGF) supplement and heparin in keloid fibroblast cultures. Fibroblast cultures that were incubated with ECGF alone also demonstrated a measurable decrease of approx. 50% in collagen synthesis compared with control cultures. The inhibition of collagen synthesis was related to the down-regulation of collagen gene expression. Quantitative measurements of mRNA-cDNA hybrids revealed that the gene expression of collagen type I was decreased by more than 80% by heparin and ECGF. Markedly diminished levels of mRNA encoding collagen type I were also observed in cultures incubated with ECGF alone. The results show that ECGF and heparin elicit a negative regulatory effect on collagen production, and that this inhibition is due largely to the down-regulation of the pro-alpha 1(I) of type I collagen gene. Furthermore, ECGF has a potent suppressive effect, and heparin provides an additive effect to this inhibitory phenomenon.


2005 ◽  
Vol 114 (3) ◽  
pp. 183-191 ◽  
Author(s):  
Tomoko Tateya ◽  
Jin Ho Sohn ◽  
Ichiro Tateya ◽  
Diane M. Bless

This study aimed to clarify the characteristics of rat vocal fold scarring by examining the alteration of key components in the extracellular matrix: hyaluronic acid, collagen, and fibronectin. Under monitoring with a 1.9-mm-diameter telescope, unilateral vocal fold stripping was performed, and larynges were harvested at 2, 4, 8, and 12 weeks after operation. The vocal folds were histologically analyzed with Alcian blue stain, trichrome stain, and immunofluorescence of collagen type I, collagen type III, and fibronectin. The scarred vocal folds showed less hyaluronic acid and more collagen types I and III than did the controls at all time points. Type III was stable for 12 weeks, while type I declined until 8 weeks and thereafter remained unchanged. Fibronectin increased for 4 weeks and then decreased; it was close to the control level at 8 and 12 weeks. These results suggest that the tissue remodeling process in scarred vocal folds slows down around 2 months after wounding.


2006 ◽  
Vol 74 (11) ◽  
pp. 6356-6364 ◽  
Author(s):  
Angela S. Barbosa ◽  
Patricia A. E. Abreu ◽  
Fernanda O. Neves ◽  
Marina V. Atzingen ◽  
Mônica M. Watanabe ◽  
...  

ABSTRACT Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Several pathogens, including spirochetes, have been shown to express surface proteins that interact with the extracellular matrix (ECM). This adhesin-mediated binding process seems to be a crucial step in the colonization of host tissues. This study examined the interaction of putative leptospiral outer membrane proteins with laminin, collagen type I, collagen type IV, cellular fibronectin, and plasma fibronectin. Six predicted coding sequences selected from the Leptospira interrogans serovar Copenhageni genome were cloned, and proteins were expressed, purified by metal affinity chromatography, and characterized by circular dichroism spectroscopy. Their capacity to mediate attachment to ECM components was evaluated by binding assays. We have identified a leptospiral protein encoded by LIC12906, named Lsa24 (leptospiral surface adhesin; 24 kDa) that binds strongly to laminin. Attachment of Lsa24 to laminin was specific, dose dependent, and saturable. Laminin oxidation by sodium metaperiodate reduced the protein-laminin interaction in a concentration-dependent manner, indicating that laminin sugar moieties are crucial for this interaction. Triton X-114-solubilized extract of L. interrogans and phase partitioning showed that Lsa24 was exclusively in the detergent phase, indicating that it is a component of the leptospiral membrane. Moreover, Lsa24 partially inhibited leptospiral adherence to immobilized laminin. This newly identified membrane protein may play a role in mediating adhesion of L. interrogans to the host. To our knowledge, this is the first leptospiral adhesin with laminin-binding properties reported to date.


2009 ◽  
Vol 106 (2) ◽  
pp. 468-475 ◽  
Author(s):  
Bridget E. Sullivan ◽  
Chad C. Carroll ◽  
Bozena Jemiolo ◽  
Scott W. Trappe ◽  
S. Peter Magnusson ◽  
...  

Tendon is mainly composed of collagen and an aqueous matrix of proteoglycans that are regulated by enzymes called matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Although it is known that resistance exercise (RE) and sex influence tendon metabolism and mechanical properties, it is uncertain what structural and regulatory components contribute to these responses. We measured the mRNA expression of tendon's main fibrillar collagens (type I and type III) and the main proteoglycans (decorin, biglycan, fibromodulin, and versican) and the regulatory enzymes MMP-2, MMP-9, MMP-3, and TIMP-1 at rest and after RE. Patellar tendon biopsy samples were taken from six individuals (3 men and 3 women) before and 4 h after a bout of RE and from a another six individuals (3 men and 3 women) before and 24 h after RE. Resting mRNA expression was used for sex comparisons (6 men and 6 women). Collagen type I, collagen type III, and MMP-2 were downregulated ( P < 0.05) 4 h after RE but were unchanged ( P > 0.05) 24 h after RE. All other genes remained unchanged ( P > 0.05) after RE. Women had higher resting mRNA expression ( P < 0.05) of collagen type III and a trend ( P = 0.08) toward lower resting expression of MMP-3 than men. All other genes were not influenced ( P > 0.05) by sex. Acute RE appears to stimulate a change in collagen type I, collagen type III, and MMP-2 gene regulation in the human patellar tendon. Sex influences the structural and regulatory mRNA expression of tendon.


2017 ◽  
Vol 34 (03) ◽  
pp. 186-193
Author(s):  
T. Falade ◽  
M. Olude ◽  
O. Mustapha ◽  
E. Mbajiorgu ◽  
A. Ihunwo ◽  
...  

Abstract Introduction: This study was carried out to investigate the expression of connective tissue (Collagens I and III), glia and neuronal markers in the testis of the African giant rat using histology and immunohistochemistry techniques. Materials and Methods: Eight (8) apparently healthy wild male African giant rats were used for this experiment, divided into 2 groups (juvenile and adult) of 4 animals each. The testes were harvested following intracardial perfusion of the rats and histology was performed using Haematoxylin-Eosin stain and Mallory-Heideinhain rapid one- step staining for connective tissue. Immunohistochemical identification was achieved using the following antibodies: anti-collagen type I, anti-collagen type III, anti-glial fibrillary acidic protein and anti-p75 nerve growth factor for the expression of collagen type I, collagen type III, astrocyte-like cell and neuronal cells respectively. Photomicrography was achieved using Axioskop® microscope and quantitative data were analyzed using student t-test. Results: The cyto-architecture of the testis was typical in the African giant rat. The connective tissue expressed in the juvenile and adult group, signaling of glial-like cells were seen in the perivascular region across the experimental groups. Immuno-localization of neuronal cells were seen in the interstitial spaces across all the groups, but with more expressions in the juvenile. Conclusion: This work has provided a clear description of the expression of connective tissue, neuronal and glial cells in the testis of the African giant rat and their possible relationships across juvenile and adult groups.


1986 ◽  
Vol 34 (11) ◽  
pp. 1417-1429 ◽  
Author(s):  
J Becker ◽  
D Schuppan ◽  
H Benzian ◽  
T Bals ◽  
E G Hahn ◽  
...  

The aim of the present study was to characterize the composition of the organic matrix in alveolar jaw bone and dentine using antibodies against pro-collagens Types I and III and collagens Types IV, V, and VI. After demineralization of oral hard tissues in 0.2 N HCl, antigenicity was well preserved and the distribution of the pro-collagens and collagens could be demonstrated. Staining for pro-collagen Type I was prominent around osteoblasts and in pre-dentine, indicating active de novo synthesis of Type I pro-collagen. Pro-collagen Type I was ubiquitous but was less abundant in bone and dentine, whereas pro-collagen Type III was seen only in areas of bone remodeling, in peritubular spaces, and in pre-dentine. Type IV collagen was limited to the basement membranes of vessels in osteons and bone marrow. Type V collagen was detected neither in pre-dentine nor in bone. In contrast, Type VI collagen was found in dentine and bone, showing a faint but homogeneous staining which, similarly to pro-collagen Type III, was pronounced around osteoblasts and in pre-dentine, areas of active bone and dentine formation. This study showed that the organic matrix of dentine and bone contains Type VI as well as Type I collagen. Pro-collagen Type III (and to a lesser extent collagen Type VI) is transiently produced during new formation and remodeling of oral hard tissues, and disappears once the matrix calcifies. Type I pro-collagen qualifies as a general marker protein for increased osteoblastic activity. We conclude that immunostaining for the different collagen/pro-collagen types can be used to assess normal or abnormal stages of bone/dentine formation.


Cosmetics ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 8
Author(s):  
Nesma Aly ◽  
Emilie Benoit ◽  
Jean-Luc Chaubard ◽  
Kavyasree Chintalapudi ◽  
Soojin Choung ◽  
...  

Collagen and its derivative proteins have been widely used as a major component for cosmetic formulations as a natural ingredient and moisturizer. Most commercially available collagens are animal-derived collagen type I and other forms of collagen, such as type III collagen, are far less prevalent in animals, making extraction and purification extremely difficult and expensive. Here, we report the production of a 50 kDa protein produced in yeast that is 100% identical to the N-terminus of the human type III collagen. This recombinant protein has a larger molecular weight than most incumbent recombinant collagen proteins available for personal care applications. We report the industrialization of both the fermentation and purification processes to produce a final recombinant protein product. This final protein product was shown to be safe for general applications to human skin and compatible with common formulation protocols, including ethanol-based formulations. This recombinant collagen type III protein was also shown to uniquely stimulate both collagen type I and type III production and secretion by primary human dermal fibroblasts. The unique combination of biostimulation, compatibility with beauty product formulations and demonstrated commercial production, make this novel recombinant type III collagen a good candidate for broad application in the cosmetics industry.


1992 ◽  
Vol 286 (1) ◽  
pp. 73-77 ◽  
Author(s):  
M Mörike ◽  
R E Brenner ◽  
G B Bushart ◽  
W M Teller ◽  
U Vetter

Collagen produced in vitro by bone cells isolated from 19 patients with different forms of osteogenesis imperfecta (OI) was analysed. Clinically, four patients were classified as OI type I, 10 patients as OI type III and five patients as OI type IV. Bone cells of 12 of the 19 OI patients produced structurally abnormal type I collagen. Electrophoretically uniformly slower migrating collagen type I alpha-chains were found in one case of OI type I, in seven cases of OI type III and in one case of OI type IV; two cultures of OI type III produced two different populations of collagen type I alpha-chains, and one culture of OI type IV showed reduction-sensitive dimer formation of alpha 1(I) chains, resulting from the inadequate incorporation of a cysteine residue into the triple helical domain of alpha 1(I). Quantitative analysis of collagen metabolism led to the distinction of two groups of cultured OI osteoblasts. In osteoblasts of OI type I, mainly production of collagen was decreased, whereas secretion, processing and pericellular accumulation of (pro)collagen type I was similar to that in control osteoblasts. In contrast, in osteoblasts of OI types III and IV, production as well as secretion, processing and pericellular accumulation of (pro)collagen type I were significantly decreased. Low levels of type I collagen were found irrespective of the presence or absence of structural abnormalities of collagen type I in all OI types.


Sign in / Sign up

Export Citation Format

Share Document