Effects of valinomycin on vanadate-sensitive and vanadate-resistant H+ transport in vesicles from turtle bladder epithelium: Evidence for a K+H+ exchanger

1991 ◽  
Vol 176 (3) ◽  
pp. 1285-1290 ◽  
Author(s):  
Steven J. Youmans ◽  
Catherine R. Barry
1987 ◽  
Vol 253 (6) ◽  
pp. R917-R921
Author(s):  
S. Sabatini ◽  
N. A. Kurtzman

Unidirectional 45Ca fluxes were measured in the turtle bladder under open-circuit and short-circuit conditions. In the open-circuited state net calcium flux (JnetCa) was secretory (serosa to mucosa) and was 388.3 +/- 84.5 pmol.mg-1.h-1 (n = 20, P less than 0.001). Ouabain (5 X 10(-4) M) reversed JnetCa to an absorptive flux (serosal minus mucosal flux = -195.8 +/- 41.3 pmol.mg-1.h-1; n = 20, P less than 0.001). Amiloride (1 X 10(-5) M) reduced both fluxes such that JnetCa was not significantly different from zero. Removal of mucosal sodium caused net calcium absorption; removal of serosal sodium caused calcium secretion. When bladders were short circuited, JnetCa decreased to approximately one-third of control value but remained secretory (138.4 +/- 54.3 pmol.mg-1.h-1; n = 9, P less than 0.025). When ouabain was added under short-circuit conditions, JnetCa was similar in magnitude and direction to ouabain under open-circuited conditions (i.e., absorptive). Tissue 45Ca content was approximately equal to 30-fold lower when the isotope was placed in the mucosal bath, suggesting that the apical membrane is the resistance barrier to calcium transport. The results obtained in this study are best explained by postulating a Ca2+-ATPase on the serosa of the turtle bladder epithelium and a sodium-calcium antiporter on the mucosa. In this model, the energy for calcium movement would be supplied, in large part, by the Na+-K+-ATPase. By increasing cell sodium, ouabain would decrease the activity of the mucosal sodium-calcium exchanger (or reverse it), uncovering active calcium transport across the serosa.


1986 ◽  
Vol 94 (3) ◽  
pp. 233-243 ◽  
Author(s):  
Troy E. Dixon ◽  
Chris Clausen ◽  
Denise Coachman ◽  
Bernard Lane

1969 ◽  
Vol 217 (5) ◽  
pp. 1496-1503 ◽  
Author(s):  
J Bourgoignie ◽  
S Klahr ◽  
J Yates ◽  
L Guerra ◽  
NS Bricker

1988 ◽  
Vol 102 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Troy E. Dixon ◽  
Chris Clausen ◽  
Denise Coachman

Author(s):  
J. Jacob ◽  
M.F.M. Ismail

Ultrastructural changes have been shown to occur in the urinary bladder epithelium (urothelium) during the life span of humans. With increasing age, the luminal surface becomes more flexible and develops simple microvilli-like processes. Furthermore, the specialised asymmetric structure of the luminal plasma membrane is relatively more prominent in the young than in the elderly. The nature of the changes at the luminal surface is now explored by lectin-mediated adsorption visualised by scanning electron microscopy (SEM).Samples of young adult (21-31 y old) and elderly (58-82 y old) urothelia were fixed in buffered 2% glutaraldehyde for 10 m and washed with phosphate buffered saline (PBS) containing Ca++ and Mg++ at room temperature. They were incubated overnight at 4°C in 0.1 M ammonium chloride in PBS to block any remaining aldehyde groups. The samples were then allowed to stand in PBS at 37°C for 2 h before incubation at 37°C for 30 m with lectins. The lectins used were concanavalin A (Con A), wheat germ agglutinin (WGA), phytohaemagglutinin (PHA) and pokeweed mitogen (PWM) at a concentration of 500 mg/ml in PBS at pH 7.A.


2005 ◽  
Vol 173 (4S) ◽  
pp. 82-83
Author(s):  
Masahiro Tamaki ◽  
Tadashi Hayashi ◽  
Osamu Ogawa ◽  
Tomohiro Ueda ◽  
Naoki Yoshimura

Pathology ◽  
1974 ◽  
Vol 6 (4) ◽  
pp. 343-350 ◽  
Author(s):  
Mary E. Schultz ◽  
Michael W. Weldon

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chunhui Miao ◽  
Mingyu Yu ◽  
Geng Pei ◽  
Zhenyi Ma ◽  
Lisong Zhang ◽  
...  

AbstractHost cells use several anti-bacterial pathways to defend against pathogens. Here, using a uropathogenic Escherichia coli (UPEC) infection model, we demonstrate that bacterial infection upregulates RhoB, which subsequently promotes intracellular bacteria clearance by inducing LC3 lipidation and autophagosome formation. RhoB binds with Beclin 1 through its residues at 118 to 140 and the Beclin 1 CCD domain, with RhoB Arg133 being the key binding residue. Binding of RhoB to Beclin 1 enhances the Hsp90-Beclin 1 interaction, preventing Beclin 1 degradation. RhoB also directly interacts with Hsp90, maintaining RhoB levels. UPEC infections increase RhoB, Beclin 1 and LC3 levels in bladder epithelium in vivo, whereas Beclin 1 and LC3 levels as well as UPEC clearance are substantially reduced in RhoB+/− and RhoB−/− mice upon infection. We conclude that when stimulated by UPEC infections, host cells promote UPEC clearance through the RhoB-Beclin 1-HSP90 complex, indicating RhoB may be a useful target when developing UPEC treatment strategies.


2020 ◽  
pp. 1-12
Author(s):  
Maroeska J. Burggraaf ◽  
Lisette Waanders ◽  
Mariska Verlaan ◽  
Janneke Maaskant ◽  
Diane Houben ◽  
...  

BACKGROUND: Bladder cancer is the ninth most common cancer in men. 70% of these tumors are classified as non-muscle invasive bladder cancer and those patients receive 6 intravesical instillations with Mycobacterium bovis BCG after transurethral resection. However, 30% of patients show recurrences after treatment and experience severe side effects that often lead to therapy discontinuation. Recently, another vaccine strain, Salmonella enterica typhi Ty21a, demonstrated promising antitumor activity in vivo. Here we focus on increasing bacterial retention in the bladder in order to reduce the number of instillations required and improve antitumor activity. OBJECTIVE: To increase the binding of Ty21a to the bladder wall by surface labeling of the bacteria with adhesion protein FimH and to study its effect in a bladder cancer mouse model. METHODS: Binding of Ty21a with surface-labeled FimH to the bladder wall was analyzed in vitro and in vivo. The antitumor effect of a single instillation of Ty21a+FimH in treatment was determined in a survival experiment. RESULTS: FimH-labeled Ty21a showed significant (p <  0.0001) improved binding to mouse and human cell lines in vitro. Furthermore, FimH labeled bacteria showed ∼5x more binding to the bladder than controls in vivo. Enhanced binding to the bladder via FimH labeling induced a modest improvement in median but not in overall mice survival. CONCLUSIONS: FimH labeling of Ty21a significantly improved binding to bladder tumor cells in vitro and the bladder wall in vivo. The improved binding leads to a modest increase in median survival in a single bladder cancer mouse study.


Sign in / Sign up

Export Citation Format

Share Document