Effects of freezing storage time on the density of muscarinic receptors in the human postmortem brain: an autoradiographic study in control and Alzheimer's disease brain tissues

1996 ◽  
Vol 728 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Rafael Rodríguez-Puertas ◽  
Julio Pascual ◽  
Angel Pazos
2004 ◽  
Vol 1025 (1-2) ◽  
pp. 98-105 ◽  
Author(s):  
Mei-Ping Kung ◽  
Catherine Hou ◽  
Zhi-Ping Zhuang ◽  
Daniel Skovronsky ◽  
Hank F. Kung

2019 ◽  
Author(s):  
Yi-Chen Hsieh ◽  
Caiwei Guo ◽  
Hari K. Yalamanchili ◽  
Measho Abreha ◽  
Rami Al-Ouran ◽  
...  

SUMMARYIn Alzheimer’s disease (AD), spliceosomal proteins with critical roles in RNA processing aberrantly aggregate and mislocalize to Tau neurofibrillary tangles. We test the hypothesis that Tau-spliceosome interactions disrupt pre-mRNA splicing in AD. In human postmortem brain with AD pathology, Tau coimmunoprecipitates with spliceosomal core components. In Drosophila models, pan-neuronal Tau expression triggers reductions in core and U1-specific spliceosomal proteins, and genetic disruption of these factors, including SmB, U1-70K, and U1A, enhances Tau-mediated neurodegeneration. We further show that loss-of-function in SmB, encoding a core spliceosomal protein, causes decreased survival, progressive locomotor impairment, and neuronal loss, independent of Tau toxicity. Lastly, RNA-sequencing reveals a similar profile of mRNA splicing errors in SmB mutant and Tau transgenic flies, including intron retention and non-annotated cryptic splice junctions. In human brains, we confirm cryptic splicing errors in association with neurofibrillary tangle pathologic burden. Our results implicate spliceosome disruption and perturbations of the neuronal transcriptome in Tau-mediated neurodegeneration in AD.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 871
Author(s):  
Eun-Gyung Lee ◽  
Sunny Chen ◽  
Lesley Leong ◽  
Jessica Tulloch ◽  
Chang-En Yu

Increasing evidence suggests that the Translocase of Outer Mitochondria Membrane 40 (TOMM40) gene may contribute to the risk of Alzheimer’s disease (AD). Currently, there is no consensus as to whether TOMM40 expression is up- or down-regulated in AD brains, hindering a clear interpretation of TOMM40’s role in this disease. The aim of this study was to determine if TOMM40 RNA levels differ between AD and control brains. We applied RT-qPCR to study TOMM40 transcription in human postmortem brain (PMB) and assessed associations of these RNA levels with genetic variants in APOE and TOMM40. We also compared TOMM40 RNA levels with mitochondrial functions in human cell lines. Initially, we found that the human genome carries multiple TOMM40 pseudogenes capable of producing highly homologous RNAs that can obscure precise TOMM40 RNA measurements. To circumvent this obstacle, we developed a novel RNA expression assay targeting the primary transcript of TOMM40. Using this assay, we showed that TOMM40 RNA was upregulated in AD PMB. Additionally, elevated TOMM40 RNA levels were associated with decreases in mitochondrial DNA copy number and mitochondrial membrane potential in oxidative stress-challenged cells. Overall, differential transcription of TOMM40 RNA in the brain is associated with AD and could be an indicator of mitochondrial dysfunction.


2019 ◽  
Author(s):  
Lenora Higginbotham ◽  
Lingyan Ping ◽  
Eric B. Dammer ◽  
Duc M. Duong ◽  
Maotian Zhou ◽  
...  

AbstractAlzheimer’s disease (AD) features a complex web of pathological processes beyond amyloid accumulation and tau-mediated neuronal death. To meaningfully advance AD therapeutics, there is an urgent need for novel biomarkers that comprehensively reflect these disease mechanisms. Here we applied an integrative proteomics approach to identify cerebrospinal fluid (CSF) biomarkers linked to a diverse set of pathophysiological processes in the diseased brain. Using multiplex proteomics, we identified >3,500 proteins across 40 CSF samples from control and AD patients and >12,000 proteins across 48 postmortem brain tissues from control, asymptomatic AD (AsymAD), AD, and other neurodegenerative cases. Co-expression network analysis of the brain tissues resolved 44 protein modules, nearly half of which significantly correlated with AD neuropathology. Fifteen modules robustly overlapped with proteins quantified in the CSF, including 271 CSF markers highly altered in AD. These 15 overlapping modules were collapsed into five panels of brain-linked fluid markers representing a variety of cortical functions. Neuron-enriched synaptic and metabolic panels demonstrated decreased levels in the AD brain but increased levels in diseased CSF. Conversely, glial-enriched myelination and immunity panels were highly increased in both the brain and CSF. Using high-throughput proteomic analysis, proteins from these panels were validated in an independent CSF cohort of control, AsymAD, and AD samples. Remarkably, several validated markers were significantly altered in AsymAD CSF and appeared to stratify subpopulations within this cohort. Overall, these brain-linked CSF biomarker panels represent a promising step toward a physiologically comprehensive tool that could meaningfully enhance the prognostic and therapeutic management of AD.


2010 ◽  
Vol 6 ◽  
pp. S197-S197
Author(s):  
Akinori Miyashita ◽  
Yuko Saito ◽  
Hiroyuki Hatsuta ◽  
Tamao Tsukie ◽  
Akiyoshi Kakita ◽  
...  

2008 ◽  
Vol 4 ◽  
pp. T592-T592
Author(s):  
Akinori Miyashita ◽  
Yuko Saito ◽  
Akiyoshi Kakita ◽  
Soichi Ogishima ◽  
Hiroshi Tanaka ◽  
...  

2019 ◽  
Author(s):  
Makis Tzioras ◽  
Michael J.D. Daniels ◽  
Declan King ◽  
Karla Popovic ◽  
Rebecca K. Holloway ◽  
...  

AbstractSynapse loss correlates strongly with cognitive decline in Alzheimer’s disease, but the mechanisms underpinning this phenomenon remain unclear. Recent evidence from mouse models points to microglial cells as mediators of synapse removal, and human genetic evidence implicates microglia in disease risk. Here we demonstrate that microglia from human postmortem brain contain synaptic proteins and that greater amounts are observed in microglia from Alzheimer’s compared to non-diseased brain tissue. Further, we observe that primary human adult microglia phagocytose synapses isolated from human brain, and that AD brain-derived synapses are phagocytosed more rapidly and abundantly than controls. Together, these data show that synapses in the human AD brain are more prone to ingestion by microglia. Our findings provide evidence from human tissue implicating altered microglial-mediated synaptic uptake in AD pathobiology.One Sentence SummaryAD alters synapse ingestion by microglia


Sign in / Sign up

Export Citation Format

Share Document