Diffusion of chloride ions in limestone filler blended cement pastes and mortars

1995 ◽  
Vol 25 (8) ◽  
pp. 1667-1678 ◽  
Author(s):  
H. Hornain ◽  
J. Marchand ◽  
V. Duhot ◽  
M. Moranville-Regourd
2008 ◽  
Vol 14 (4) ◽  
pp. 269-275 ◽  
Author(s):  
Z’hor Guemmadi ◽  
Musa Resheidat ◽  
Hacéne Houari ◽  
Belkacem Toumi

The effect of substitution of Portland cement by limestone up to 40% as well as its fineness on the physico‐mechanical properties of fresh and hardened cement pastes is studied. The binder was prepared by substitution of cement by limestone filler. Fillers were chosen of various particle sizes and with percentages from 5 to 40. Test results revealed that the replacement of Portland cement by the finest filler of limestone slightly decreases the consistency and the setting times (initial and final). The total porosity decreases and accordingly the compressive strength is improved with the content and fines of limestone. Although limestone has a little accelerating effect on the hydration process of Portland cement, but acts only as a filler reducing the porosity due to its compact structure, in which the compressive strength of the hardened cement paste is enhanced. The XRD and DTA analyses of samples cured up to 28 days showed that this amelioration is due to formation of new hydrated compounds. It is concluded that an addition of finely ground limestone filler only up to 15% gives a better strength. Santrauka Tirtos šviežios ir sukietėjusios cementinės tešlos, kurioje iki 40 % cemento pakeista įvairaus smulkumo maltu kalkakmeniu, savybės. Rišiklis buvo paruoštas dalį cemento pakeitus maltu kalkakmenio užpildu. Užpildo dalelės buvo įvairaus dydžio, o jų kiekis buvo keičiamas nuo 5 % iki 40 %. Tyrimai parodė, kad priedas leidžia sumažinti vandens kiekį, reikalingą tos pačios konsistencijos mišiniui gauti, taip pat cemento rišimosi pradžiai ir pabaigai paankstinti. Sumažėja cementinio akmens suminis poringumas ir atitinkamai padidėja stipris gniuždant cementinio akmens, kuriame yra kalkakmenio priedų. Nors kalkakmenio priedas nedaug pagreitina portlandcemenčio hidratacijos procesą, tačiau veikia kaip užpildas, sutankinantis struktūrą, dėl to labai padidėja sukietėjusio cementinio akmens stipris gniuždant. Bandinių, išlaikytų 28 dienas, rentgenostruktūrinė ir diferencinė terminė analizė parodė, kad pagerėjimas yra dėl susidariusių naujadarų. Apibendrinant galima teigti, kad 15 % malto kalkakmenio priedas turi didžiausią įtaką stiprumo rezultatams.


2021 ◽  
Vol 13 (11) ◽  
pp. 6504
Author(s):  
Walid Deboucha ◽  
Nassim Sebaibi ◽  
Yassine El Mendili ◽  
Aurélie Fabien ◽  
U. Johnson Alengaram ◽  
...  

The reactivity effect of calcium carbonate, present in ground oyster shells and limestone filler, on the formation of carboaluminate phases in ground granulated blast furnace slag blended cement pastes was reported in this paper. Six different binary and ternary blended cement pastes were prepared using ground granulated blast furnace slag, ground oyster shells and limestone filler with different replacement levels (from 5 to 35%). The carboaluminate formation was assessed and quantified directly using X-ray diffraction (XRD), and indirectly by following the aluminate phase’s reaction (heat flow) and consumed calcium carbonate using Isothermal Calorimetry (IC) and Thermogravimetric Analysis (TGA), respectively. Further, the overall reaction degree calculated based on TGA results and the compressive strength were determined to support the findings obtained. The results revealed that the calcium carbonate present in ground oyster shells is more reactive when compared to that present in limestone filler, where more formed hemi- and monocarboaluminate phases were observed in mixtures containing ground oyster shells. An enhancement in compressive strength and overall reaction degree was observed by adding 5% ground oyster shells as cement replacement.


2013 ◽  
Vol 25 (2) ◽  
pp. 80-85 ◽  
Author(s):  
Eisa E. Hekal ◽  
Essam A. Kishar ◽  
Maha R. Mohamed ◽  
Badria A. Mohamed
Keyword(s):  

1988 ◽  
Vol 18 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Robert L. Day ◽  
Bryan K. Marsh
Keyword(s):  

2014 ◽  
Vol 507 ◽  
pp. 286-290
Author(s):  
V. Rajkumar

The main aim of this investigation is to study the influence of monoethylamine, diethylamine and triethylamine inhibitors on the corrosion resistance performance of 25% fly ash blended cement concrete. These inhibitors were added in dosages of 1%, 2%, 3% and 4% by weight of cement and experimental investigations have been carried out to compare the effectiveness of these three inhibitors with regard to strength and corrosion resistance. The mechanical strength properties studied were compressive, split tensile, flexural and bond strengths. The resistance to corrosion was evaluated based on the performance of the concrete for the penetration of chloride ions by means of impressed voltage technique, Rapid chloride permeability test (RCPT), AC impedance measurement, and weight loss measurement and ultimately the most effective of the three inhibitors and its optimal dosage has been determined.


1986 ◽  
Vol 86 ◽  
Author(s):  
Micheline Regourd

ABSTRACTThe hydration of a blended cement through hydraulic or pozzolanic reactions results in heterogeneous polyphase materials. Because portland cement clinker is the major component in most cement blends, the microstructural development of portland cement hydrates, including C-S-H and pore structures, is first discussed. Slag, fly ash, silica fume and limestone filler cements are then compared to portland cement with regards to C-S-H morphology and composition, aluminate crystallization, cement paste interfaces and pore size distribution.


2019 ◽  
Vol 967 ◽  
pp. 205-213
Author(s):  
Faiz U.A. Shaikh ◽  
Anwar Hosan

This paper presents the effect of nanosilica (NS) on compressive strength and microstructure of cement paste containing high volume slag and high volume slag-fly ash blend as partial replacement of ordinary Portland cement (OPC). Results show that high volume slag (HVS) cement paste containing 60% slag exhibited about 4% higher compressive strength than control cement paste, while the HVS cement paste containing 70% slag maintained the similar compressive strength to control cement paste. However, about 9% and 37% reduction in compressive strength in HVS cement pastes is observed due to use of 80% and 90% slag, respectively. The high volume slag-fly ash (HVSFA) cement pastes containing total slag and fly ash content of 60% exhibited about 5%-16% higher compressive strength than control cement paste. However, significant reduction in compressive strength is observed in higher slag-fly ash blends with increasing in fly ash contents. Results also show that the addition of 1-4% NS improves the compressive strength of HVS cement paste containing 70% slag by about 9-24%. However, at higher slag contents of 80% and 90% this improvement is even higher e.g. 11-29% and 17-41%, respectively. The NS addition also improves the compressive strength by about 1-59% and 5-21% in high volume slag-fly ash cement pastes containing 21% fly ash+49%slag and 24% fly ash+56%slag, respectively. The thermogravimetric analysis (TGA) results confirm the reduction of calcium hydroxide (CH) in HVS/HVSFA pastes containing NS indicating the formation of additional calcium silicate hydrate (CSH) gels in the system. By combining slag, fly ash and NS in high volumes e.g. 70-80%, the carbon footprint of cement paste is reduced by 66-76% while maintains the similar compressive strength of control cement paste. Keywords: high volume slag, nanosilica, compressive strength, TGA, high volume slag-fly ash blend, CO2 emission.


Sign in / Sign up

Export Citation Format

Share Document