A system for the analysis of clinical acid-base states based on micromethods for the determination of plasma bicarbonate concentration and blood pH

1964 ◽  
Vol 9 (4) ◽  
pp. 348-358 ◽  
Author(s):  
Esther F. Freier ◽  
Kathleen J. Clayson ◽  
Ellis S. Benson
1957 ◽  
Vol 3 (5) ◽  
pp. 631-637
Author(s):  
Herbert P Jacobi ◽  
Anthony J Barak ◽  
Meyer Beber

Abstract The Co2 combining power bears a variable relationship to the in vivo plasma bicarbonate concentration, depending upon the type and severity of acid-base distortion. In respiratory alkalosis and metabolic acidosis the Co2 combining power will usually be greater than the in vivo plasma bicarbonate concentration; whereas, in respiratory acidosis and metabolic alkalosis the Co2 combining power will usually be less. Co2 content, on the other hand, will always parallel the in vivo plasma bicarbonate concentration quite closely, being only slightly greater. These facts, together with other considerations which are discussed, recommend the abandonment of the determination of CO2 combining power.


1996 ◽  
Vol 16 (1_suppl) ◽  
pp. 126-129 ◽  
Author(s):  
Mariano Feriani ◽  
Claudio Ronco ◽  
Giuseppe La Greca

Our objective is to investigate transperitoneal buffer fluxes with solution containing lactate and bicarbonate, and to compare the final effect on body base balance of the two solutions. One hundred and four exchanges, using different dwell times, were performed in 52 stable continuous ambulatory peritoneal dialysis (CAPD) patients. Dialysate effluent lactate and bicarbonate and volumes were measured. Net dialytic base gain was calculated. Patients’ acid-base status and plasma lactate were determined. In lactate-buffered CAPD solution, lactate concentration in dialysate effluent inversely correlated with length of dwell time, but did not correlate with plasma lactate concentration and net ultrafiltration. Bicarbonate concentration in dialysate effluent correlated with plasma bicarbonate and dwell time but not with ultrafiltration. The arithmetic sum of the lactate gain and bicarbonate loss yielded the net dialytic base gain. Ultrafiltration was the most important factor affecting net dialytic base gain. A previous study demonstrated that in patients using a bicarbonate-buffered solution the net bicarbonate gain is a function of dwell time, ultrafiltration, and plasma bicarbonate. By combining the predicted data of the dialytic base gain with the calculated metabolic acid production, an approximate body base balance could be obtained with both lactate and bicarbonate-buffered CAPD solutions. The body base balance in CAPD patients is self-regulated by the feedback between plasma bicarbonate concentration and dialytic base gain. The level of plasma bicarbonate is determined by the dialytic base gain and the metabolic acid production. This can explain the large interpatient variability in acid-base correction. Bicarbonate-buffered CAPD solution is equal to lactate solution in correcting acid-base disorders of CAPD patients.


1964 ◽  
Vol 206 (4) ◽  
pp. 875-882 ◽  
Author(s):  
David P. Simpson

Citrate excretion has been studied in dogs under various conditions of acid-base balance in order to determine which factors are responsible for the increased citrate clearance present in metabolic alkalosis. A close relationship, significantly modified by systemic pH, was found between plasma bicarbonate concentration and citrate clearance. In the presence of an alkaline plasma pH, there was a linear relationship between changes in plasma bicarbonate concentration and changes in citrate clearance. Other experiments also demonstrated the influence of plasma bicarbonate concentration on citrate clearance at alkaline pH. Under acidotic conditions citrate clearances were low and changes in plasma bicarbonate concentration had little effect on citrate excretion. A change in plasma pH from an acidotic to an alkalotic state, with a constant plasma bicarbonate concentration, produced an increase in citrate clearance. Thus the coexistence in metabolic alkalosis of high plasma bicarbonate concentration and high plasma pH results in a markedly increased citrate clearance.


1964 ◽  
Vol 19 (5) ◽  
pp. 897-900 ◽  
Author(s):  
Karlis Adamsons ◽  
Salha S. Daniel ◽  
Gillian Gandy ◽  
L. Stanley James

The effect of temperature upon pH of blood from adult and newborn humans was investigated. Although the mean ΔpH/ΔT values for the two populations differed, 0.0144/ °C for adults versus 0.0128 for the newborn, this was not peculiar to the source since the temperature-induced pH changes were identical when comparison was made between samples of similar pH and CO2 content. It was shown that even over the physiologic pH range ΔpH/ΔT is not constant but is a function of pH and CO2. No significant changes in ΔpH/ΔT were observed with oxygenation of hemoglobin. The influence of red cell concentration was detectable only when hematocrit values fell below 20%. A graph and an equation for the determination of ΔpH/ΔT of blood with a given pH and CO2 content is presented. acid base Submitted on December 9, 1963


2012 ◽  
Vol 303 (7) ◽  
pp. F991-F999 ◽  
Author(s):  
Alexandra Pallini ◽  
Henry N. Hulter ◽  
Jurgen Muser ◽  
Reto Krapf

Endothelin-1 inhibits collecting duct sodium reabsorption and stimulates proximal and distal tubule acidification in experimental animals both directly and indirectly via increased mineralocorticoid activity. Diet-induced acid loads have been shown to increase renal endothelin-1 activity, and it is hypothesized that increased dietary acid-induced endothelin-1 activity may be a causative progression factor in human renal insufficiency and that this might be reversed by provision of dietary alkali. We sought to clarify, in normal human volunteers, the role of endothelin-1 in renal acidification and to determine whether the effect is dependent on dietary sodium chloride. Acid-base equilibrium was studied in seven normal human volunteers with experimentally induced metabolic acidosis [NH4Cl 2.1 mmol·kg body weight (BW)−1·day−1] with and without inhibition of endogenous endothelin-1 activity by the endothelin A/B-receptor antagonist bosentan (125 BID p.o./day) both during dietary NaCl restriction (20 mmol/day) and NaCl repletion (2 mmol NaCl·kg BW−1·day−1). During NaCl restriction, but not in the NaCl replete state, bosentan significantly increased renal net acid excretion in association with stimulation of ammoniagenesis resulting in a significantly increased plasma bicarbonate concentration (19.0 ± 0.8 to 20.1 ± 0.9 mmol/l) despite a decrease in mineralocorticoid activity and an increase in endogenous acid production. In pre-existing human metabolic acidosis, endothelin-1 activity worsens acidosis by decreasing the set-point for renal regulation of plasma bicarbonate concentration, but only when dietary NaCl provision is restricted.


1983 ◽  
Vol 245 (2) ◽  
pp. G230-G235 ◽  
Author(s):  
A. N. Charney ◽  
L. P. Haskell

To determine the relative effects of systemic pH, CO2 tension (PCO2), and bicarbonate concentration on ileal electrolyte transport, states of acute metabolic acidosis and alkalosis were created in Sprague-Dawley rats by gavage feeding (NH4)2SO4 and NaHCO3, respectively. During in situ perfusion of the ileum in anesthetized animals, electrolyte transport was measured before and after respiratory compensation of the systemic pH. Acute respiratory acidosis and alkalosis also were studied by ventilating animals with 0, 3, or 8% CO2. When animals in all groups were considered, net sodium absorption correlated very well with blood pH (r = -0.97). Net bicarbonate secretion correlated with the plasma bicarbonate concentration (r = 0.91) independently of blood pH and PCO2. Net chloride absorption correlated with blood PCO2 (r = 0.92) and was altered when systemic pH and bicarbonate concentration changed in opposite directions. Alterations in luminal pH and PCO2 did not affect electrolyte transport. These results suggest that systemic pH affects a sodium chloride absorptive process and that the plasma bicarbonate concentration affects a chloride absorptive-bicarbonate secretory exchange process in the rat ileum.


2014 ◽  
Vol 83 (1) ◽  
pp. 29-36
Author(s):  
Jędrzej Przystanowicz ◽  
Barbara Zielińska-Psuja ◽  
Joanna Kowalówka-Zawieja ◽  
Karina Sommerfeld

Introduction. Ethylene glycol (EG) is relatively nontoxic but undergoes a multi-step oxidation to toxic metabolites, aldehydes and acids. The accumulation of organic acids, mainly glycolates, leads to the development of profound, life-threatening metabolic acidosis. A key therapy is an antidotal treatment with fomepizole (4-MP), the inhibitor of the first step of EG biotransformation enzyme, alcohol dehydrogenase.Aim. The aim of the study was to demonstrate the efficacy of fomepizole in the prevention of acid-base balance disorders in acute ethylene glycol poisonings in rats.Material and methods. Adult male Wistar rats were given EG (p.o.) with single (i.p.) or multiple (p.o.) doses of 4-MP (EG 3830 and 5745 mg/kg, respectively, 4-MP in single dose of 10 mg/kg or 15 mg/kg followed by 10 mg/kg every 12 hours). Blood gas analysis was performed and blood pH, bicarbonate concentration and base excess were evaluated.Results and conclusions. The single dose of 4-MP was effective in preventing a decrease in blood pH, bicarbonate concentration and base excess during the entire experimental period (pH 7.35 vs 7.21 at hour 12, bicarbonate concentration 27.2 vs 18.3 mmol/dm3 at hour 8, base excess 1.8 vs -8.2 mmol/dm3 at hour 18). The multiple administration of 4-MP started 2 hours after EG poisoning resulted in rapid restoration of proper values of acid- -base balance parameters. Fomepizole is highly efficacious in restraining the acid-base balance disorders which are concomitant with acute ethylene glycol poisonings.


1985 ◽  
Vol 248 (6) ◽  
pp. F796-F803 ◽  
Author(s):  
A. M. Kaufman ◽  
C. Brod-Miller ◽  
T. Kahn

Studies were performed to assess the role of changes in the excretion of citrate, a metabolic precursor of bicarbonate, in acid-base balance in diuretic-induced metabolic alkalosis. Rats on a low-chloride diet with sodium sulfate added were studied during a base-line period, 3 days of furosemide administration, and 4 days post-furosemide. During the period of furosemide administration, net acid excretion and plasma bicarbonate concentration increased. In the post-furosemide period, net acid excretion remained higher than base line but plasma bicarbonate concentration did not increase further. Citrate excretion was significantly higher in the post-furosemide period than in base line. Studies substituting sodium neutral phosphate or sodium bicarbonate for dietary sodium sulfate demonstrated greater increases in net acid excretion post-furosemide and, again, no increase in plasma bicarbonate concentration during this period. Citrate excretion was greater than in the sulfate group. The increment in citrate excretion was proportional to the base “load,” defined with respect to changes in net acid excretion and/or dietary bicarbonate. Thus, in these studies alterations of base excretion in the form of citrate play an important role in acid-base balance during diuretic-induced metabolic alkalosis.


1984 ◽  
Vol 56 (6) ◽  
pp. 1640-1646 ◽  
Author(s):  
N. E. Madias ◽  
W. H. Bossert ◽  
H. J. Adrogue

Systematic data are not available with regard to the anticipated appropriate responses of arterial PCO2 to primary alterations in plasma bicarbonate concentration. In the present study, we attempted to rigorously characterize the ventilatory response to chronic metabolic acid-base disturbances of graded severity in the dog. Animals with metabolic acidosis produced by prolonged HCl feeding and metabolic alkalosis of three different modes of generation, i.e., diuretics (ethacrynic acid or chlorothiazide), gastric drainage, and administration of deoxycorticosterone acetate (alone or in conjunction with oral sodium bicarbonate), were examined. The results indicate the existence of a significant and highly predictable ventilatory response to chronic metabolic acid-base disturbances. Moreover, the magnitude of the ventilatory response appears to be uniform throughout a wide spectrum of chronic metabolic acid-base disorders extending from severe metabolic acidosis to severe metabolic alkalosis; on average, arterial PCO2 is expected to change by 0.74 Torr for a 1-meq/l chronic change in plasma bicarbonate concentration of metabolic origin. Furthermore, the data suggest that the ventilatory response to chronic metabolic alkalosis is independent of the particular mode of generation.


Sign in / Sign up

Export Citation Format

Share Document