Active and inactive renin in normal human plasma. Comparison between acid activation and cryoactivation

1979 ◽  
Vol 95 (2) ◽  
pp. 227-234 ◽  
Author(s):  
Paul J. Lijnen ◽  
Antoon K. Amery ◽  
Robert H. Fagard
Hypertension ◽  
1982 ◽  
Vol 4 (1) ◽  
pp. 102-111 ◽  
Author(s):  
M Matsunaga ◽  
K Morimoto ◽  
A Hara ◽  
C H Pak ◽  
C Kawai

1987 ◽  
Vol 65 (11) ◽  
pp. 2319-2328 ◽  
Author(s):  
A. David Purdon ◽  
Arline Y. Loh ◽  
Daniel H. Osmond

Standard methods for determining prorenin-renin concentrations in plasma (PRC) and other tissues require the addition of exogenous renin substrate (angiotensinogen) to improve the kinetics of the renin reaction. We studied the effects of substrate prepared from normal human plasma fraction Cohn IV-4, or from nephrectomized (2NX) sheep plasma, on PRC of normal and 2NX human plasmas before and after prorenin activation by acid, cold, and trypsin, and compared the results with plasma renin activities (PRA, no added substrate). Plasmas from 2NX men exhibited negligible basal PRA, indicating that very little, if any, renin had been formed from the extrarenal prorenin they contained, and suggesting the lack of an endogenous prorenin activating mechanism, or "convertase," of probable renal origin. Prorenin was demonstrable by tryptic activation, more than by acid or cold, at up to about 30% of normal. Addition of Cohn IV-4 substrate to 2NX plasma unexpectedly produced (i) a basal PRC value higher than in normal plasma, (ii) total renin values after activation by acid, cold, and trypsin that were much closer to normal values than reflected by PRA methodology, without a commensurate increase (if anything a decrease) in prorenin as a percentage of total renin estimated by all activation methods, and (iii) substantial equalization of activation effects such that trypsin was no longer more effective than acid and cold (and this was also noted with normal plasma). The skewing effect of adding Cohn IV-4 substrate on the PRC of 2NX plasma was much greater than in normal plasma, even though 2NX plasma already had an above normal level of endogenous substrate and should have been influenced less. Enhancement of PRC was very pronounced even when Cohn IV-4 was added to make up only 9% of total (endogenous + exogenous) substrate in the incubation system, suggesting that it was not the added substrate but a renin-generating contaminant that inflated the PRC. Such inflation could be blocked by adding protease inhibitors, suggesting that the responsible protease(s) acted as a prorenin "convertase" that generated new renin from renal and (or) extrarenal prorenin contributed by the added substrate, as well as by the plasma being assayed. One component of convertase could be kallikrein, which was identified by chromogenic assay, the importance of which relative to total convertase activity is unknown. The convertase content of substrate from 2NX sheep plasma seemed to be low (again suggesting loss due to 2NX, i.e., its renal origin), but it contributed extrarenal prorenin from which additional renin was apparently formed by the action of convertase provided by normal human plasma in the PRC assay. Thus, both human Cohn IV-4 and 2NX sheep substrates can apparently contribute renal and (or) extrarenal prorenin and various amounts of convertase which can, along with the actual substrate, greatly influence the PRC assay, and do so to a higher degree in some plasmas than in others. We also found that activation by cold and trypsin did not destroy endogenous plasma substrate (if anything increased it), suggesting activation of a "prosubstrate," while acid activation destroyed only about half of the measurable substrate. The presence of convertase in the Cohn IV-4 fraction suggests it must have come from the original whole plasma. This, along with existing prorenin, has the potential to be a functional renin-producing pathway in normal blood which is lost after nephrectomy owing to the disappearance of a renal "convertase."


1975 ◽  
Vol 33 (03) ◽  
pp. 547-552 ◽  
Author(s):  
L Meunier ◽  
J. P Allain ◽  
D Frommel

SummaryA mixture of adsorbed normal human plasma and chicken plasma was prepared as reagent for factor IX measurement using a one-stage method. The substrate was found to be specific for factor IX. Its performances tested on samples displaying factor IX activity ranging from <l%–2,500% compared favorably with those obtained when using the plasma of severe haemophilia B patients as substrate.


1975 ◽  
Vol 33 (03) ◽  
pp. 540-546 ◽  
Author(s):  
Robert F Baugh ◽  
James E Brown ◽  
Cecil Hougie

SummaryNormal human plasma contains a component or components which interfere with ristocetin-induced platelet aggregation. Preliminary examination suggests a protein (or proteins) which binds ristocetin and competes more effectively for ristocetin than do the proteins involved in ristocetin-induced platelet aggregation. The presence of this protein in normal human plasma also prevents ristocetin-induced precipitation of plasma proteins at levels of ristocetin necessary to produce platelet aggregation (0.5–2.0 mg/ml). Serum contains an apparent two-fold increase of this component when compared with plasma. Heating serum at 56° for one hour results in an additional 2 to 4 fold increase. The presence of a ristocetin-binding protein in normal human plasma requires that this protein be saturated with ristocetin before ristocetin-induced platelet aggregation will occur. Variations in the ristocetin-binding protein(s) will cause apparent discrepancies in ristocetin-induced platelet aggregation in normal human plasmas.


1992 ◽  
Vol 67 (04) ◽  
pp. 440-444 ◽  
Author(s):  
Hiroko Tsuda ◽  
Toshiyuki Miyata ◽  
Sadaaki Iwanaga ◽  
Tetsuro Yamamoto

SummaryThe analysis of normal human plasma by fibrin autography revealed four species of plasminogen activator (PA) activity related to tissue-type PA, factor XII, prekallikrein and urokinase-type PA (u-PA). The u-PA activity increased significantly by incubating plasma with dextran sulfate. This increase was coincident with both the cleavage of factor XII and the complex formation of activated factor XII with its plasma inhibitors, which were determined by immunoblotting procedure. The dextran sulfate-dependent activation of u-PA required both factor XII and prekallikrein, but did not require either plasminogen or factor XI. High molecular weight kininogen was required only at a low concentration of dextran sulfate. Thus the results indicate that the factor XII and prekallikrein-mediated activation of single chain u-PA (scu-PA) operates as a major pathway of scu-PA activation in whole plasma in contact with dextran sulfate.


1992 ◽  
Vol 67 (01) ◽  
pp. 060-062 ◽  
Author(s):  
J Harsfalvi ◽  
E Tarcsa ◽  
M Udvardy ◽  
G Zajka ◽  
T Szarvas ◽  
...  

Summaryɛ(γ-glutamyl)lysine isodipeptide has been detected in normal human plasma by a sensitive HPLC technique in a concentration of 1.9-3.6 μmol/1. Incubation of in vitro clotted plasma at 37° C for 12 h resulted in an increased amount of isodipeptide, and there was no further significant change when streptokinase was also present. Increased in vivo isodipeptide concentrations were also observed in hypercoagulable states and during fibrinolytic therapy.


1963 ◽  
Vol 09 (01) ◽  
pp. 030-052 ◽  
Author(s):  
Eberhard Mammen

SummaryIn this paper an inhibitor is described that is found in hemophilic plasma and serum different from any till now described inhibitor. The inhibitor only inhibits prothrombin activation in the “intrinsic clotting systems”. This inhibitor is probably not present in normal human plasma or serum. It is destroyed by ether and freeze drying, is labile to acid and storage at room temperature. It is stable upon dialysis and has not been adsorbed on barium sulfate, aluminum hydroxide or kaolin. It precipitates at 50% v/v saturation with alcohol. The nature of this inhibitor seems to be a protein or lipoprotein.Factor VIII was isolated from hemophilic plasma. The amount isolated was the same as from normal plasma and the activity properties were not different. Hemophiliacs have normal amounts of factor VIII.


1979 ◽  
Author(s):  
P Friberger ◽  
C Lenne

A recently published method for Factor X (FX) assay (1) utilizing Russel's Viper Venom (RVV) and a chromogenic substrate has been further investigated by testing a large number of parameters. This method has been considered as a suitable method for monitoring coumarol treatment (Bergström et al).The conditions for the activation of FX by purified preparations of the RVV have been studied as well as the conditions for FXa determination with a new chromogenic substrate Bz-Ile-Glu(γ-piperidyl)-Gly-Arg-pNA (S-2337). Both purified factors and normal plasma have been used. The effect of plasma inhibitors as well as the selectivity of the method has been studied.The reproducibility and stability of the different reagents and standards have been studied and found to be good.The amount of FXa activity obtained from normal human plasma has been titrated with FXa inhibitors of known purity.1) Aurell L. et al, Thromb. Res., 11, 595 (1977)2) Bergström et al, Thromb. Res., 12, 531 (1978)


Sign in / Sign up

Export Citation Format

Share Document