Soot emission, thermal radiation, and laminar instability of acetylene diffusion flames

1983 ◽  
Vol 52 ◽  
pp. 247-256 ◽  
Author(s):  
H.A. Becker ◽  
D. Liang
Author(s):  
Krishna C. Kalvakala ◽  
Suresh K. Aggarwal

Operating combustion systems at elevated pressures has the advantage of improved thermal efficiency and system compactness. However, it also leads to increased soot emission. We report herein a computational study to characterize the effect of oxygenation on PAHs (Polycyclic Aromatic Hydrocarbons) and soot emissions in ethylene diffusion flames at pressures 1–8atm. Laminar oxygenated flames are established in a counterflow configuration by using N2 diluted fuel stream along with O2 enriched oxidizer stream such that the stoichiometric mixture fraction (ζst) is varied, but the adiabatic flame temperature is not materially changed. Simulations are performed using a validated fuel chemistry model and a detailed soot model. The primary objective of the study was to expand the fundamental understanding of PAH and soot formation in oxygenated flames at elevated pressures. At a given pressure, as the level of oxygenation (ζst) is increased, we observe a significant reduction in PAHs (benzene and pyrene) and consequently in soot formation. Further, at a fixed ζst, as pressure is increased, it leads to increased benzene and pyrene formation, and thus increased soot emission. The reaction path analysis indicates that this can be attributed to the fact that at higher pressures, the C2/C4 path becomes more significant for benzene formation compared to the propargyl recombination path.


2017 ◽  
Vol 2017 (0) ◽  
pp. G0500202
Author(s):  
Naofumi KASAYA ◽  
Mamoru KIKUCHI ◽  
Yosuke SUENAGA ◽  
Hideki YANAOKA

1985 ◽  
Vol 107 (1) ◽  
pp. 48-53 ◽  
Author(s):  
T. Ahmad ◽  
S. L. Plee ◽  
J. P. Myers

An existing steady-state, locally homogeneous flow model of turbulent spray combustion was modified to predict NO emission from a spray flame and soot emission from a gas-jet flame. The effect of turbulent fluctuations on the reaction rates was accounted for. The predicted NO emission from an n-pentane spray with a changing injection velocity could be correlated with the convective time scale of the flow. Calculation of soot emission from a burning turbulent gas jet indicated that the centerline soot concentration reaches a peak upstream of the maximum temperature location and then decreases due to soot oxidation and dilution by air entrainment.


Sign in / Sign up

Export Citation Format

Share Document