Fibre/matrix interface failure controlled by a critical energy criterion

Composites ◽  
1991 ◽  
Vol 22 (6) ◽  
pp. 445-447 ◽  
Author(s):  
P. Marshall ◽  
J. Price
2013 ◽  
Vol 592-593 ◽  
pp. 401-404
Author(s):  
Zdeněk Chlup ◽  
Martin Černý ◽  
Adam Strachota ◽  
Martina Halasova ◽  
Ivo Dlouhý

The fracture behaviour of long fibre reinforced composites is predetermined mainly by properties of fibre-matrix interface. The matrix prepared by pyrolysis of polysiloxane resin possesses ability to resist high temperatures without significant damage under oxidising atmosphere. The application is therefore limited by fibres and possible changes in the fibre matrix interface. The study of development of interface during high temperature exposition is the main aim of this contribution. Application of various techniques as FIB, GIS, TEM, XRD allowed to monitor microstructural changes in the interface of selected places without additional damage caused by preparation. Additionally, it was possible to obtain information about damage, the crack formation, caused by the heat treatment from the fracture mechanics point of view.


2013 ◽  
Vol 710 ◽  
pp. 320-324
Author(s):  
Ying Zi Jiang ◽  
Wei Li Wang ◽  
Xue Feng Huang ◽  
Lei Fu ◽  
Zhuang Qing Fan

The numerical simulation of shelled Comp.B explosive was studied following the Lee-Tarver ignition and growth model when it was impacted respectively by 4340 Steel, OFHC and 93#W projectile with the same mass; the influences on explosive detonation of the initiation process, the material of projectile and the L/D ratio of projectile were analyzed; the critical initiation speeds of the projectiles of three different materials with different L/D ratio were gained. In order to verify the simulation results, the questions were calculated by the theoretical simplified model, the results of the theoretical calculation and the numerical simulation accorded well based on critical energy criterion. The results show that the capability of igniting explosive, the first is 93#W, the second is OFHC, the last is 4340 Steel; The initiation point were not on the interface of shell and explosive, and the faster of the impacting velocity, the initiation point closer the interface; the bigger of the L/D ratio of projectile, the higher of the critical initiation speed.


1996 ◽  
Vol 31 (23) ◽  
pp. 6145-6153 ◽  
Author(s):  
A. Pegoretti ◽  
M. L. Accorsi ◽  
A. T. Dibenedetto

Sign in / Sign up

Export Citation Format

Share Document