Modelling of stress transfer across the fibre—matrix interface

Author(s):  
Jang-Kyo Kim ◽  
Yiu-Wing Mai

A new analytical method has been developed that can predict the stress transfer between fibre and matrix in a uniaxially fibre-reinforced composite associated with either a single matrix crack or a fibre break. Account is taken of thermal residual stresses arising from a mismatch in thermal expansion coefficients between the fibre and matrix. In addition Poisson ratio mismatches are also taken into account. The theoretical approach retains all relevant stress and displacement components, and satisfies exactly the equilibrium equations, the interface conditions and other boundary conditions involving stresses. Two of the four stress-strain-temperature relations are satisfied exactly, whereas the remaining two are satisfied in an average sense. The required non-interface displacement boundary conditions are also satisfied in an average sense. The general representation is used to solve three types of stress transfer problem. A matrix crack and a broken fibre are analysed for the case when there is perfect bonding between fibre and matrix. The third type of problem takes account of frictional slip at the interface governed by the Coulomb friction law. The approximate analytic approach described in this paper, and the preliminary numerical predictions presented, indicate that the stress transfer between fibres and matrix in a unidirectional fibre-reinforced composite, loaded in tension, can now be investigated theoretically in more detail than before. The paper includes some discussion of singularities in the stress fields, which are smoothed by the averaging techniques employed in the analysis. The analytical approach has enabled the development of a micro-mechanical model of frictional slip at the fibre-matrix interface based on the Coulomb friction law, which is more realistic than assuming that the interfacial shear stress is a constant. Predictions are presented of the stress distributions along the fibre-matrix interface and, in particular, it is shown how the length of the frictional slip zone is related to applied strain, friction coefficient, fibre volume fraction and the difference between the test and ‘manufacturing’ temperatures. An indication is given of many other areas of composite modelling where the new theory will be applied.


1993 ◽  
Vol 2 (5) ◽  
pp. 096369359300200 ◽  
Author(s):  
H.D. Wagner ◽  
S. Ling

An energy balance approach is proposed for the single fibre composite (or fragmentation) test, by which the degree of fibre-matrix bonding is quantified by means of the interfacial energy, rather than the interfacial shear strength, as a function of the fibre geometrical and mechanical characteristics, the stress transfer length, and the debonding length. The validity of the approach is discussed using E-glass fibres embedded in epoxy, both in the dry state and in the presence of hot distilled water.


2021 ◽  
Vol 5 (5) ◽  
pp. 130
Author(s):  
Tan Ke Khieng ◽  
Sujan Debnath ◽  
Ernest Ting Chaw Liang ◽  
Mahmood Anwar ◽  
Alokesh Pramanik ◽  
...  

With the lightning speed of technological evolution, the demand for high performance yet sustainable natural fibres reinforced polymer composites (NFPCs) are rising. Especially a mechanically competent NFPCs under various loading conditions are growing day by day. However, the polymers mechanical properties are strain-rate dependent due to their viscoelastic nature. Especially for natural fibre reinforced polymer composites (NFPCs) which the involvement of filler has caused rather complex failure mechanisms under different strain rates. Moreover, some uneven micro-sized natural fibres such as bagasse, coir and wood were found often resulting in micro-cracks and voids formation in composites. This paper provides an overview of recent research on the mechanical properties of NFPCs under various loading conditions-different form (tensile, compression, bending) and different strain rates. The literature on characterisation techniques toward different strain rates, composite failure behaviours and current challenges are summarised which have led to the notion of future study trend. The strength of NFPCs is generally found grow proportionally with the strain rate up to a certain degree depending on the fibre-matrix stress-transfer efficiency. The failure modes such as embrittlement and fibre-matrix debonding were often encountered at higher strain rates. The natural filler properties, amount, sizes and polymer matrix types are found to be few key factors affecting the performances of composites under various strain rates whereby optimally adjust these factors could maximise the fibre-matrix stress-transfer efficiency and led to performance increases under various loading strain rates.


2007 ◽  
Vol 334-335 ◽  
pp. 289-292 ◽  
Author(s):  
F.M. Zhao ◽  
Z. Liu ◽  
F.R. Jones

Phase-stepping photoelasticity has been used to study the fragmentation of an E-glass fibre in epoxy resin and examine quantitatively the effect of a transverse matrix crack on the stress transfer at an interphase. Unsized glass fibre was coated by plasma polymerisation with a crosslinked conformal film of 90% acrylic acid and 10% 1,7-octadiene. The micro-mechanical response at the fibre-matrix interphase and in the adjacent matrix has been described in detail using contour maps of fringe order. From these, the interfacial shear stress profiles at fibre-break have been calculated.


2013 ◽  
Vol 592-593 ◽  
pp. 401-404
Author(s):  
Zdeněk Chlup ◽  
Martin Černý ◽  
Adam Strachota ◽  
Martina Halasova ◽  
Ivo Dlouhý

The fracture behaviour of long fibre reinforced composites is predetermined mainly by properties of fibre-matrix interface. The matrix prepared by pyrolysis of polysiloxane resin possesses ability to resist high temperatures without significant damage under oxidising atmosphere. The application is therefore limited by fibres and possible changes in the fibre matrix interface. The study of development of interface during high temperature exposition is the main aim of this contribution. Application of various techniques as FIB, GIS, TEM, XRD allowed to monitor microstructural changes in the interface of selected places without additional damage caused by preparation. Additionally, it was possible to obtain information about damage, the crack formation, caused by the heat treatment from the fracture mechanics point of view.


1996 ◽  
Vol 31 (23) ◽  
pp. 6145-6153 ◽  
Author(s):  
A. Pegoretti ◽  
M. L. Accorsi ◽  
A. T. Dibenedetto

Sign in / Sign up

Export Citation Format

Share Document