Characterisation of the fibre/matrix interface in reinforced polymers by the push-in technique

1997 ◽  
Vol 57 (8) ◽  
pp. 845-851 ◽  
Author(s):  
Gerhard Kalinka ◽  
André Leistner ◽  
Andreas Hampe

Variations in the mechanical properties of the glass fibre reinforced polymers were seen when exploring nano fillers such as Multi Walled Carbon Nano Tubes (MWCNTs) and graphene powders for reinforcement. GFRP composites when fabricated with increase in percentage weights of MWCNTs and graphene get better interfacial bonding with the matrix. Nano fillers improve the performance of the composites. This paper deals with the examination and experimental investigations carried out for the prediction of the enhancement of mechanical properties on GFRP reinforced with MWCNTs and graphene powders. GFRP composites were fabricated with variations in the amount of nano fillers in percentage weights of 2%, 4%, 6%, 8% and 10% wt. MWCNTs and graphene powders. The method used for reinforcement of resin with nano fillers was ultrasonication method meant for avoiding voids. A tendency for the mechanical properties to deteriorate was observed when nano fillers added were beyond certain weights of MWCNTs and graphene powders. This could be due to the agglomeration of nano fillers that change the fibre/matrix interface. Graphene nano fillers opts to be better compared to MWCNTs since the fabricated graphene reinforced glass fibre specimens have a better performance than GFRP specimens reinforced with MWCNTs.


2013 ◽  
Vol 592-593 ◽  
pp. 401-404
Author(s):  
Zdeněk Chlup ◽  
Martin Černý ◽  
Adam Strachota ◽  
Martina Halasova ◽  
Ivo Dlouhý

The fracture behaviour of long fibre reinforced composites is predetermined mainly by properties of fibre-matrix interface. The matrix prepared by pyrolysis of polysiloxane resin possesses ability to resist high temperatures without significant damage under oxidising atmosphere. The application is therefore limited by fibres and possible changes in the fibre matrix interface. The study of development of interface during high temperature exposition is the main aim of this contribution. Application of various techniques as FIB, GIS, TEM, XRD allowed to monitor microstructural changes in the interface of selected places without additional damage caused by preparation. Additionally, it was possible to obtain information about damage, the crack formation, caused by the heat treatment from the fracture mechanics point of view.


1996 ◽  
Vol 31 (23) ◽  
pp. 6145-6153 ◽  
Author(s):  
A. Pegoretti ◽  
M. L. Accorsi ◽  
A. T. Dibenedetto

2019 ◽  
Vol 22 ◽  
pp. 38-47 ◽  
Author(s):  
Ondřej Januš ◽  
František Girgle ◽  
Iva Rozsypalová ◽  
Vojtěch Kostiha ◽  
Lenka Bodnárová ◽  
...  

The paper describes an experimental program for studying the fatigue performance of GFRP bars, which has been initiated by the authors. Two different test configurations were used to assess the fatigue behaviour. The bare specimens were tested within the first series. A modified gripping system was used to reduce eccentricity when the bar was not directly fixed. However, the boundary conditions seem to affect the results. The second series consisted of a set of specimens of bars embedded in concrete. This configuration seems appropriate for determination of fatigue life of GFRP bars. Two S-N curves for bare bars and bars embedded in concrete were created and compared. Significant reduction of interlaminar shear strength at the beginning of fatigue loading proved matrix or fibre/matrix interface damage.


Sign in / Sign up

Export Citation Format

Share Document