In vitro facilitation of Xenopus oocyte maturation by subthreshold doses of progesterone

1977 ◽  
Vol 59 (1) ◽  
pp. 91-95 ◽  
Author(s):  
Jean Marot ◽  
Robert Bellé ◽  
René Ozon
1993 ◽  
Vol 123 (4) ◽  
pp. 859-868 ◽  
Author(s):  
J Kuang ◽  
C L Ashorn

MPM-2 antigens, a discrete set of phosphoproteins that contain similar phosphoepitopes (the MPM-2 epitope), are associated with various mitotically important structures. The central mitotic regulator cdc2 kinase has been proposed to induce M-phase by phosphorylating many proteins which might include the MPM-2 antigens. To clarify the relationship of cdc2 kinase and the MPM-2 antigens, we developed an in vitro assay that enabled us to specifically detect the kinases that phosphorylate the MPM-2 epitope (ME kinases) in crude cell extracts. Two different ME kinase activities were identified in unfertilized Xenopus eggs, neither of which was cdc2 kinase, but both appeared to be activated by the introduction of cdc2 kinase into oocytes or oocyte extract. The two ME kinases differed in molecular size, substrate specificity, peptide components, and MPM-2 reactivity. The larger one, ME kinase-H, phosphorylated several MPM-2 antigens, while the smaller one, ME kinase-L, phosphorylated mainly one. We purified ME kinase-L to near homogeneity by sequential chromatography and showed that it has the characteristics of the 42-kD microtubule-associated protein (MAP) kinase. Our results support the previous finding that MAP kinase is activated during Xenopus oocyte maturation and suggest that MAP kinase may contribute to oocyte maturation induction by phosphorylating one subtype of MPM-2 epitope.


Author(s):  
Er-Meng Gao ◽  
Bongkoch Turathum ◽  
Ling Wang ◽  
Di Zhang ◽  
Yu-Bing Liu ◽  
...  

AbstractThis study evaluated the differences in metabolites between cumulus cells (CCs) and mural granulosa cells (MGCs) from human preovulatory follicles to understand the mechanism of oocyte maturation involving CCs and MGCs. CCs and MGCs were collected from women who were undergoing in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) treatment. The differences in morphology were determined by immunofluorescence. The metabolomics of CCs and MGCs was measured by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) followed by quantitative polymerase chain reaction (qPCR) and western blot analysis to further confirm the genes and proteins involved in oocyte maturation. CCs and MGCs were cultured for 48 h in vitro, and the medium was collected for detection of hormone levels. There were minor morphological differences between CCs and MGCs. LC-MS/MS analysis showed that there were differences in 101 metabolites between CCs and MGCs: 7 metabolites were upregulated in CCs, and 94 metabolites were upregulated in MGCs. The metabolites related to cholesterol transport and estradiol production were enriched in CCs, while metabolites related to antiapoptosis were enriched in MGCs. The expression of genes and proteins involved in cholesterol transport (ABCA1, LDLR, and SCARB1) and estradiol production (SULT2B1 and CYP19A1) was significantly higher in CCs, and the expression of genes and proteins involved in antiapoptosis (CRLS1, LPCAT3, and PLA2G4A) was significantly higher in MGCs. The level of estrogen in CCs was significantly higher than that in MGCs, while the progesterone level showed no significant differences. There are differences between the metabolomes of CCs and MGCs. These differences may be involved in the regulation of oocyte maturation.


Author(s):  
Sicong Yu ◽  
Lepeng Gao ◽  
Yang Song ◽  
Xin Ma ◽  
Shuang Liang ◽  
...  

Abstract Mitochondria play an important role in controlling oocyte developmental competence. Our previous studies showed that glycine can regulate mitochondrial function and improve oocyte maturation in vitro. However, the mechanisms by which glycine affects mitochondrial function during oocyte maturation in vitro have not been fully investigated. In this study, we induced a mitochondrial damage model in oocytes with the Bcl-2-specific antagonist ABT-199. We investigated whether glycine could reverse the mitochondrial dysfunction induced by ABT-199 exposure and whether it is related to calcium regulation. Our results showed that ABT-199 inhibited cumulus expansion, decreased the oocyte maturation rate and the intracellular glutathione (GSH) level, caused mitochondrial dysfunction, induced oxidative stress, which was confirmed by decreased mitochondrial membrane potential (Δ⍦m) and the expression of mitochondrial function-related genes (PGC-1α), and increased reactive oxygen species (ROS) levels and the expression of apoptosis-associated genes (Bax, caspase-3, CytC). More importantly, ABT-199-treated oocytes showed an increase in the intracellular free calcium concentration ([Ca 2+]i) and had impaired cortical type 1 inositol 1,4,5-trisphosphate receptors (IP3R1) distribution. Nevertheless, treatment with glycine significantly ameliorated mitochondrial dysfunction, oxidative stress and apoptosis, glycine also regulated [Ca 2+]i levels and IP3R1 cellular distribution, which further protects oocyte maturation in ABT-199-induced porcine oocytes. Taken together, our results indicate that glycine has a protective action against ABT-199-induced mitochondrial dysfunction in porcine oocytes.


Zygote ◽  
2021 ◽  
pp. 1-7
Author(s):  
Luciana Diniz Rola ◽  
Eveline dos Santos Zanetti ◽  
Maite del Collado ◽  
Ellen de Fátima Carvalho Peroni ◽  
José Maurício Barbanti Duarte

Summary In vitro production of embryos has gained prominence as a tool for use in wildlife conservation programmes in situ and ex situ. However, the development of this technique depends on steps that include ovarian stimulation, collection and oocyte maturation. The purpose of this study was to assess the feasibility of an ovarian stimulation protocol for follicular aspiration, the efficiency of videolaparoscopy for follicular aspiration and test a medium for in vitro oocyte maturation for the species Mazama gouazoubira. Five females were submitted to repeated ovarian stimulation (hormone protocol using controlled internal drug release), and estradiol benzoate on D0 and eight injections of follicle-stimulating hormone, once every 12 h, from D4 onwards at 30-day intervals. Fourteen surgical procedures were performed in superstimulated females, resulting in the collection of 94 oocytes and an average of 17.1 ± 9.1 follicles observed, 13.5 ± 6.6 follicles aspirated and 7.2 ± 3.7 oocytes collected per surgery. After collection, the oocytes were submitted to in vitro maturation for 24 h and stained with Hoechst 33342 dye to evaluate their nuclear status; 64.5% of the oocytes reached MII and 16.1% were spontaneously activated by parthenogenesis. The nuclear status of oocytes that did not undergo in vitro maturation was evaluated; 80.9% were found to be immature.


1986 ◽  
Vol 27 (4) ◽  
pp. 505-519 ◽  
Author(s):  
K. P. Xu ◽  
T. Greve ◽  
S. Smith ◽  
P. Hyttel

2021 ◽  
Vol 10 (13) ◽  
pp. 2757
Author(s):  
Xia Hao ◽  
Amandine Anastácio ◽  
Kenny A. Rodriguez-Wallberg

Fertility preservation through ovarian stimulation, aiming at cryopreserving mature oocytes or embryos, is sometimes unsuccessful. This clinical situation deserves novel approaches to overcome infertility following cancer treatment in patients facing highly gonadotoxic treatment. In this controlled experimental study, we investigated the feasibility of in-vitro culturing secondary follicles isolated from superovulated ovaries of mice recently treated with gonadotropins. The follicle yields of superovulated ovaries were 45.9% less than in unstimulated controls. Follicles from superovulated ovaries showed faster growth pace during the initial 7 days of culture and secreted more 17β-estradiol by the end of culture vs controls. Parameters reflecting the outcome of follicular development and oocyte maturation competence in vitro were similar between superovulated and control groups, with a similar follicle size at the end of culture and around 70% survival. Nearly half of cultured follicles met the criteria for in-vitro maturation in both groups and approximately 60% of those achieved a mature MII oocyte, similarly in both groups. Over 60% of obtained MII oocytes displayed normal-looking spindle and chromosome configurations, without significant differences between the groups. Using a validated follicle culture system, we demonstrated the feasibility of secondary follicle isolation, in-vitro culture and oocyte maturation with normal spindle and chromosome configurations obtained from superovulated mice ovaries.


Sign in / Sign up

Export Citation Format

Share Document