Forskolin inhibition of K+ current in pregnant rat uterine smooth muscle cells

1993 ◽  
Vol 240 (2-3) ◽  
pp. 169-176 ◽  
Author(s):  
Yoshihito Inoue ◽  
Keiichi Shimamura ◽  
Nicholas Sperelakis
1995 ◽  
Vol 27 (5) ◽  
pp. 407-414 ◽  
Author(s):  
B. STIEMER ◽  
R. GRAF ◽  
H. NEUDECK ◽  
R. HILDEBRANDT ◽  
H. HOPP ◽  
...  

1989 ◽  
Vol 257 (2) ◽  
pp. C297-C305 ◽  
Author(s):  
E. Honore ◽  
C. Martin ◽  
C. Mironneau ◽  
J. Mironneau

The whole cell voltage-clamp technique was used to study the effects of extracellular ATP in cultured smooth muscle cells isolated from pregnant rat myometrium. An inward current was elicited by ATP (IATP) in cells held at -70 mV under voltage clamp. The amplitude of IATP was reduced by estrogen pretreatment and by the end of pregnancy. IATP not only did not undergo any desensitization but showed facilitation. The current-voltage relationship of IATP was linear and reversed close to 0 mV. Changing the sodium electrochemical gradient by decreasing extracellular or intracellular sodium resulted in a linear relationship between the reversal potential of IATP and Na equilibrium potential that, however, differed from the predicted curve for a purely sodium conductance. The conductance activated by ATP was monovalent cation selective with little discrimination between potassium, cesium, and sodium ions. IATP was depressed by divalent cations, and the rank order of potency was Co greater than Mg greater than Ca greater than Ba, suggesting that the free-acid form of ATP was the effective ligand. Adenosine, AMP, and ADP were ineffective in eliciting IATP, whereas ATP gamma S and alpha,beta-methylene ATP were capable of mimicking the effects of ATP, although they were less potent. These results are consistent with the free-acid form of ATP activating a monovalent cation-selective and estrogen-sensitive conductance in myometrium.


1992 ◽  
Vol 70 (4) ◽  
pp. 491-500 ◽  
Author(s):  
Nicholas Sperelakis ◽  
Yoshihito Inoue ◽  
Yusuke Ohya

Smooth muscle cells normally do not possess fast Na+ channels, but inward current is carried through two types of Ca2+ channels: slow (L type) Ca2+ channels and fast (T type) Ca2+ channels. Whole-cell voltage clamp was done on single smooth muscle cells isolated from the longitudinal layer of the 18-day pregnant rat uterus. Depolarizing pulses, applied from a holding potential of −90 mV, evoked two types of inward current, fast and slow. The fast inward current decayed within 30 ms, depended on [Na]o, and was inhibited by tetrodotoxin (TTX) (K0.5 = 27 nM). The slow inward current decayed slowly, was dependent on [Ca]o (or Ba2+), and was inhibited by nifedipine. These results suggest that the fast inward current is a fast Na+ channel current and that the slow inward current is a Ca2+ slow channel current. A fast-inactivating Ca2+ channel current was not evident. We conclude that the ion channels that generate inward currents in pregnant rat uterine cells are TTX-sensitive fast Na+ channels and dihydropyridine-sensitive slow Ca2+ channels. The number of fast Na+ channels increased during gestation. The averaged current density increased from 0 on day 5, to 0.19 on day 9, to 0.56 on day 14, to 0.90 on day 18, and to 0.86 pA/pF on day 21. This almost linear increase occurs because of an increase in the fraction of cells that possess fast Na+ channels. The Ca2+ channel current density was also higher during the latter half of gestation. These results indicate that the fast Na+ channels and Ca2+ slow channels in myometrium become more numerous as term approaches, and we suggest that the fast Na+ current may be involved in spread of excitation. Isoproterenol (β-agonist) did not affect either ICa(s) or INa(f), whereas Mg2+ (K0.5 = 12 mM) and nifedipine (K0.5 = 3.3 nM) depressed ICa(s). Oxytocin had no effect on INa(f) and actually depressed ICa(s) to a small extent. Therefore, the tocolytic action of β-agonists cannot be explained by an inhibition of ICa(s), whereas that of Mg2+ can be so explained. The stimulating action of oxytocin on uterine contractions cannot be explained by a stimulation of ICa(s).Key words: sodium current, fast sodium current, calcium currents, myometrial smooth muscle cells, pregnant uterine muscle.


2020 ◽  
Vol 10 (03) ◽  
pp. e335-e341
Author(s):  
Arunmani Mani ◽  
John W. Hotra ◽  
Sean C. Blackwell ◽  
Laura Goetzl ◽  
Jerrie S. Refuerzo

Abstract Objective The aim of this study was to determine if mesenchymal stem cells (MSCs) would suppress the inflammatory response in human uterine cells in an in vitro lipopolysaccharide (LPS)-based preterm birth (PTB) model. Study Design Cocultures of human uterine smooth muscle cells (HUtSMCs) and MSCs were exposed to 5 μg/mL LPS for 4 hours and further challenged with 1 μg/mL LPS for a subsequent 24 hours. Key elements of the parturition cascade regulated by toll-like receptors (TLRs) through activation of mitogen-activated protein kinases (MAPKs) were quantified in culture supernatant as biomarkers of MSC modulation. Results Coculture with MSCs significantly attenuated TLR-4, p-JNK, and p- extracellular signal-regulated kinase 1/2 (ERK1/2) protein levels compared with HUtSMCs monoculture (p = 0.05). In addition, coculture was associated with significant inhibition of proinflammatory cytokines interleukin (IL)-6 and IL-8 (p = 0.0001) and increased production of anti-inflammatory cytokines IL-10 and transforming growth factor (TGF)-β1 (p = 0.0001). Conclusion MSCs appear to play a role in significantly attenuating LPS-mediated inflammation via alteration of down-stream MAPKs. MSCs may represent a novel, cell-based therapy in women with increased risk of inflammatory-mediated preterm birth.


Sign in / Sign up

Export Citation Format

Share Document