Contents of DNA and RNA in the salivary glands of normal and lethal larvae of the mutant “lethal-meander” (lme) of Drosophila melanogaster

1963 ◽  
Vol 31 (3) ◽  
pp. 538-548 ◽  
Author(s):  
P.S. Chen ◽  
N. Farinella-Ferruzza ◽  
M. Oelhafen-Gandolla
2021 ◽  
Author(s):  
Mark Phillips ◽  
Kenneth R. Arnold ◽  
Zer Vue ◽  
Heather Beasley ◽  
Edgar Garza Lopez ◽  
...  

Experimental evolution with Drosophila melanogaster has been used extensively for decades to study aging and longevity. In recent years, the addition of DNA and RNA sequencing to this framework has allowed researchers to leverage the statistical power inherent to experimental evolution study the genetic basis of longevity itself. Here we incorporated metabolomic data into to this framework to generate even deeper insights into the physiological and genetic mechanisms underlying longevity differences in three groups of experimentally evolved D. melanogaster populations with different aging and longevity patterns. Our metabolomic analysis found that aging alters mitochondrial metabolism through increased consumption of NAD+ and increased usage of the TCA cycle. Combining our genomic and metabolomic data produced a list of biologically relevant candidate genes. Among these candidates, we found significant enrichment for genes and pathways associated with neurological development and function, and carbohydrate metabolism. While we do not explicitly find enrichment for aging canonical genes, neurological dysregulation and carbohydrate metabolism are both known to be associated with accelerated aging and reduced longevity. Taken together, our results in total provide very plausible genetic mechanisms for what might be driving longevity differences in this experimental system. More broadly, our findings demonstrate the value of combining multiple types of omic data with experimental evolution when attempting to dissect mechanisms underlying complex and highly polygenic traits like aging.


1972 ◽  
Vol 11 (3) ◽  
pp. 689-697
Author(s):  
H. M. KRIDER ◽  
W. PLAUT

The influence of conditions resulting in bobbed phenotypes on nucleolar RNA synthesis and the formation of constrictions at nucleolus organizers was examined in larval tissues of Drosophila melanogaster. By means of [3H]uridine incorporation and autoradiographic analysis, a mutation at the bobbed locus was shown to limit the rate of nucleolar RNA synthesis in salivary glands of XO larvae. The formation of constrictions at the organizer sites of a 4-nucleolus-organizer stock was monitored in dividing neuroblast cells stained with acridine orange. Loss of the ribosomal cistrons had been reported by other workers when such stocks were maintained for several generations. In the first generation in our work, constrictions were visible at only 2 of the 4 nucleolus organizers. This situation persisted until the fifth generation, when constrictions appeared at all 4 of the organizer sites. An increase in the rate of nucleolar RNA synthesis in the salivary glands was temporally correlated with the appearance of the extra constrictions. We interpret these observations to mean that 2 of the organizers of the 4-nucleolus-organizer stock were caused to function through the loss of ribosomal RNA cistrons; thus the functional status of an organizer would appear to be subject to control.


1993 ◽  
Vol 274 (1) ◽  
pp. 145-151 ◽  
Author(s):  
Stefan W�nsch ◽  
Stefan Schneider ◽  
Albrecht Schwab ◽  
Hans Oberleithner

1978 ◽  
Vol 26 (8) ◽  
pp. 677-679 ◽  
Author(s):  
S Hayashi ◽  
I C Gillam ◽  
A D Delaney ◽  
G M Tener

DNA in prepared chromosomes from the larval salivary glands of Drosophila melanogaster was hybridized with [125I]-labeled 5S and tRNA from the same organism. Autoradiography revealed that radioactivity was frequently bound to all regions of the slides, masking labeling of the chromosomes. Acetylation of the preparations before hybridization prevented the formation of this background and revealed the specific chromosomal sites.


1969 ◽  
Vol 14 (2) ◽  
pp. 137-150 ◽  
Author(s):  
S. C. Lakhotia ◽  
A. S. Mukherjee

Morphology and the rate of RNA synthesis of the X-chromosome in XX/XO mosaic larval salivary glands of Drosophila melanogaster have been examined. For this purpose the unstable ring-X was utilized to produce XX and XO nuclei in the same pair of glands. The width of the X-chromosome and the left arm of the 3rd chromosome (3L) of larval salivary glands was measured and the rate of RNA synthesis by them was studied upon the use of [3H]uridine autoradiography in such XX (female) and XO (male) nuclei developing in a female background (i.e. otherwise genotypically XX). In such mosaic glands the width of the single X-chromosome of male nuclei is nearly as great as that of the paired two X's of female nuclei, as is also the case in normal male (X Y) and female (XX). The single X of male nuclei synthesizes RNA at a rate equal to that of the paired two X's of female nuclei and nearly twice that of an unpaired X of XX nuclei. Neither the developmental physiology of the sex nor the proportion of XO nuclei in a pair of mosaic salivary glands of an XX larva has any influence on these two characteristics of the male X-chromosome.It is suggested that dosage compensation in Drosophila is achieved chiefly, if not fully, by a hyperactivity of the male X, in contrast to the single X inactivation in female mammals, that this hyperactivity of the male X is expressed visibly in the morphology and metabolic activity of the X-chromosome in the larval salivary glands of the male, and that this hyperactivity and therefore dosage compensation in Drosophila in general is not dependent on sex-differentiation, but is a function of the doses of the X-chromosome itself.


1984 ◽  
Vol 4 (5) ◽  
pp. 387-396 ◽  
Author(s):  
Carmen Arribas ◽  
Marta Izquierdo

We have studied the presence of a cloned fragment of DNA from Drosophila melanogaster in other organisms by means of nucleic acid hybridization analysis. The isolated region is localized in polytene chromosomes at the 63F subdivision. This region includes a puff that responds within minutes to ecdysone stimulation. We have found that 63F DNA from D. melanogaster hybridizes ‘in situ’ to both DNA and RNA from D. simulans, D. teissieri, and D. hydei. In all these species the isolated DNA remains associated with one early-ecdysone stimulated puff. The isolated Drosophila recombinant DNA is also complementary to polyadenylated RNA from foetal and adult rat liver but fails to hybridize to the nonpolyadenylated RNA classes from both sources and to polyadenylated RNA from rat mammary glands.


2018 ◽  
Vol 23 ◽  
pp. 393-398
Author(s):  
M. N. Sheyka ◽  
V. Yu. Strashnyuk

Aim. The aim of the work was to study the effect of microwave radiation of varying intensity on the polytene chromosomes puffing activity in larvae salivary glands of Drosophila melanogaster. Methods. The wild type outbred strain Oregon-R was used as the material. Microwave radiation with a frequency of 36.64 GHz and a power density of 0.1 and 1 W / m2 was used. Exposure to microwaves was applied in early embryogenesis after 3-hour oviposition. Exposure time was 30 sec. The puff sizes were studied on the squashed preparations of larvae salivary glands stained with acetoorcein. Dimensions of four puffs were investigated^ 2B5-6 (X chromosome); 62E, 71CE and 72CD (chromosome 3L). The measurements were carried out using an ocular-micrometer. Results. There were no significant changes in the size of the puffs in any of the four loci studied, regardless of the applied power density. Conclusions. Microwave radiation in early embryogenesis at a frequency of 36.64 GHz, a power density of 0.1 and 1 W/m2, and an exposure of 30 sec does not have a significant effect on the puff sizes in the Drosophila polytene chromosomes. Keywords: Drosophila melanogaster Meig., giant chromosomes, puff sizes, non-ionizing radiation.


Sign in / Sign up

Export Citation Format

Share Document