scholarly journals Induction of nuclear lamins A/C in macrophages in in vitro cultures of rat bone marrow precursor cells and human blood monocytes, and in macrophages elicited in vivo by thioglycollate stimulation

1990 ◽  
Vol 190 (2) ◽  
pp. 185-194 ◽  
Author(s):  
Ruth-Ariane Röber ◽  
Robert K.H. Gieseler ◽  
J.Hinrich Peters ◽  
Klaus Weber ◽  
Mary Osborn
1993 ◽  
Vol 104 (4) ◽  
pp. 1039-1048
Author(s):  
Z. Prakapas ◽  
M. Denoyelle ◽  
C. Dargemont ◽  
F.G. Kroese ◽  
J.P. Thiery ◽  
...  

The bone marrow precursor cells seeding the thymus have been difficult to investigate using fresh bone marrow and in vivo thymus reconstitution assays. We have therefore designed a short-term bone marrow culture system allowing the study of thymus-repopulating cells in the marrow microenvironment. Low-density rat bone marrow cells were grown on pre-established mouse bone marrow stromal cell layers. Cocultured cells were maintained either under steroid-free conditions (Whitlock/Witte-type culture) or in the presence of 10(−7) M hydrocortisone (Dexter-type culture). After 3 days in vitro, the unanchored cell fractions were tested for their ability to colonize and repopulate fetal mouse thymic lobes in vitro. Both fresh low-density cells and Whitlock/Witte-type cultures, but not Dexter-type cultures, gave rise intrathymically to significant numbers of rat donor-type Thy-1.1high CD2+ CD5low CD43+ cells accounting for 50% to 90% of the organ-cultured cells at day 14. Repopulation of fetal mouse thymic lobes by rat Thy-1.1high cells could be used as a readout assay for initiation of thymopoiesis from bone marrow precursor cells, since 90% of the cells were CD3-/low and TCR alpha beta-/low and 15% of the cells co-expressed CD4 and CD8. Dose-response analysis showed that thymus repopulating cells were at least maintained, if not amplified during the 3-day culture period, leading to at least a 10-fold enrichment as compared to unfractionated bone marrow. Unlike fresh low-density cells before culture, short-term Whitlock/Witte-type cultures were depleted in myeloid-restricted precursor cells. In culture, the thymus-repopulating activity was predominantly associated with a 10% lymphoid cell subset which did not express the B-lineage-associated antigens revealed by HIS24 (the rat B220 equivalent) and HIS50 mAbs. We propose that unanchored thymus-repopulating cells enriched in Whitlock/Witte-type cultures may represent lymphoid-restricted, T-cell precursors of the bone marrow capable of emigrating and colonizing the thymus.


2019 ◽  
Vol 20 (20) ◽  
pp. 4985 ◽  
Author(s):  
Hui-Lin Feng ◽  
Yen-Hua Chen ◽  
Sen-Shyong Jeng

Anemia is a severe complication in patients with chronic kidney disease (CKD). Treatment with exogenous erythropoietin (EPO) can correct anemia in many with CKD. We produced 5/6-nephrectomized rats that became uremic and anemic at 25 days post surgery. Injection of the anemic 5/6-nephrectomized rats with 2.8 mg zinc/kg body weight raised their red blood cell (RBC) levels from approximately 85% of the control to 95% in one day and continued for 4 days. We compared the effect of ZnSO4 and recombinant human erythropoietin (rHuEPO) injections on relieving anemia in 5/6-nephrectomized rats. After three consecutive injections, both the ZnSO4 and rHuEPO groups had significantly higher RBC levels (98 ± 6% and 102 ± 6% of the control) than the saline group (90 ± 3% of the control). In vivo, zinc relieved anemia in 5/6-nephrectomized rats similar to rHuEPO. In vitro, we cultured rat bone marrow cells supplemented with ZnCl2, rHuEPO, or saline. In a 4-day suspension culture, we found that zinc induced erythropoiesis similar to rHuEPO. When rat bone marrow cells were supplement-cultured with zinc, we found that zinc stimulated the production of EPO in the culture medium and that the level of EPO produced was dependent on the concentration of zinc supplemented. The production of EPO via zinc supplementation was involved in the process of erythropoiesis.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
María Martínez-Esparza ◽  
Antonio José Ruiz-Alcaraz ◽  
Violeta Carmona-Martínez ◽  
María Dolores Fernández-Fernández ◽  
Gonzalo Antón ◽  
...  

Background and Aim. The presumed role of the inhibitory receptor LAIR-1 (CD305) in the inflammatory response suggests that it might contribute to the pathophysiology of chronic inflammatory diseases such as liver cirrhosis. We studied the LAIR-1 expression on liver macrophages and blood monocytes related to the progression of liver cirrhosis. Methods. The expression of LAIR-1 was analyzed by immunohistochemistry, flow cytometry, and Western blot. Results. We found a decreased number of macrophages expressing LAIR-1 in cirrhotic liver that could be due to a high presence of collagen, ligand of LAIR-1, in the fibrotic tissue which could downregulate its expression or interfere with the immunostaining. The expression of LAIR-1 decreased after cell differentiation, and the total content, but not the cell surface expression, increased after activation in the HL-60 human macrophage in vitro model. Blood monocytes exhibited higher LAIR-1 expression levels in cirrhotic patients, which were evident even in early clinical stages in all monocyte subsets, and greater in the “intermediate” inflammatory monocyte subpopulation. The in vitro activation of human blood monocytes did not increase its expression on the cell surface suggesting that the in vivo increase of LAIR-1 must be the result of a specific combination of stimuli present in cirrhotic patients. This represents an exclusive feature of liver cirrhosis, since blood monocytes from other chronic inflammatory pathologies showed similar or lower LAIR-1 levels compared with those of healthy controls. Conclusions. These results may indicate that monocyte LAIR-1 expression is a new biomarker to early detect liver damage caused by chronic inflammation in liver cirrhosis.


Blood ◽  
1989 ◽  
Vol 74 (6) ◽  
pp. 1952-1962
Author(s):  
DJ Kuter ◽  
SM Greenberg ◽  
RD Rosenberg

Megakaryocytes undergo changes in ploidy in vivo in response to varying demands for platelets. Attempts to study the putative factor(s) regulating these ploidy changes have been frustrated by the lack of an appropriate in vitro model of megakaryocyte endomitosis. This report describes a culture system in which rat bone marrow is depleted of identifiable megakaryocytes and enriched in their precursor cells. Morphologically identifiable megakaryocytes appear when the depleted marrow is cultured in vitro. The total number of nucleated cells, as well as the number of megakaryocytes and their ploidy distribution, are quantitated very precisely by flow cytometry. Although the total number of nucleated cells declines by 35% to 40% over 3 days in culture, the number of megakaryocytes rises 10-fold. The number of nucleated cells, the number of megakaryocytes, and the extent of megakaryocyte ploidization behave as independent variables in culture and are dependent on the culture conditions. The addition of recombinant erythropoietin promotes a rise in the number of megakaryocytes and a shift in ploidy to higher values while recombinant murine granulocyte- macrophage colony stimulating factor is without effect on the cultured megakaryocytes. This in vitro system may provide a means to study those factors that affect megakaryocyte growth and ploidization.


1979 ◽  
Vol 149 (1) ◽  
pp. 17-26 ◽  
Author(s):  
JWM Van Der Meer ◽  
RHJ Beelen ◽  
DM Fluitsma ◽  
R Van Furth

Monoblasts, promonocytes, and macrophages in in vitro cultures of murine bone marrow were studied ultrastructurally, with special attention to peroxidatic activity. Monoblasts show peroxidatic activity in the rough endoplasmic reticulum and nuclear envelope as well as in the granules. The presence of peroxidatic activity in the Golgi apparatus could not be determined. Promonocytes have peroxidase-positive rough endoplasmic reticulum, Golgi apparatus, nuclear envelope, and granules, as previously reported. During culture, cells are formed with peroxidatic activity similar to that of monocytes or exudate macrophages (positive granules; negative Golgi apparatus, RER, and nuclear envelope); we call these cells early macrophages. In addition, transitional macrophages with both positive granules and positive RER, nuclear envelope, negative Golgi apparatus (as in exudate- resident macrophages in vivo), and mature macrophages with peroxidatic activity only in the RER and nuclear envelope (as in resident macrophages in vivo) were found. A considerable number of cells without detectable peroxidatic activity were also encountered. Our finding that macrophages with the peroxidatic pattern of monocytes (early macrophages), exudate-resident macrophages (transitional macrophages), and resident macrophages (mature macrophages), develop in vitro from proliferating precursor cells deriving from the bone marrow, demonstrates once again that resident macrophages in tissues originate from precursor cells in the bone marrow. Therefore, this conclusion can no longer be challenged on the basis of a cytochemical difference between monocytes and exudate macrophages on the one hand and resident macrophages on the other.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Anna Labedz-Maslowska ◽  
Elzbieta Kamycka ◽  
Sylwia Bobis-Wozowicz ◽  
Zbigniew Madeja ◽  
Ewa K. Zuba-Surma

Very small embryonic-like stem cells (VSELs) represent a unique rare population of adult stem cells (SCs) sharing several structural, genetic, biochemical, and functional properties with embryonic SCs and have been identified in several adult murine and human tissues. However, rat bone marrow- (BM-) derived SCs closely resembling murine or human VSELs have not been described. Thus, we employed multi-instrumental flow cytometric approach including classical and imaging cytometry and we established that newly identified population of nonhematopoietic cells expressing CD106 (VCAM-I) antigen contains SCs with very small size, expressing markers of pluripotency (Oct-4A and Nanog) on both mRNA and protein levels that indicate VSEL population. Based on our experience in both murine and human VSEL isolation procedures by fluorescence-activated cell sorting (FACS), we also optimized sorting protocol for separation of CD45−/Lin−/CD106+rat BM-derived VSELs from wild type and eGFP-expressing rats, which are often used as donor animals for cell transplantations in regenerative studiesin vivo. Thus, this is a first study identifying multiantigenic phenotype and providing sorting protocols for isolation VSELs from rat BM tissue for further examining of their functional propertiesin vitroas well as regenerative capacity in distinctin vivorat models of tissue injury.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Danna Ye ◽  
Tong Li ◽  
Philip Heraud ◽  
Rangsun Parnpai

Epigenetic events, including covalent histone modifications and DNA methylation, play fundamental roles in the determination of lineage-specific gene expression and cell fates. The aim of this study was to determine whether the DNA methyltransferase inhibitor (DNMTi) 5-aza-2′-deoxycytidine (5-aza-dC) and the histone deacetylase inhibitor (HDACi) trichostatin A (TSA) promote the hepatic differentiation of rat bone marrow-derived mesenchymal stem cells (rBM-MSCs) and their therapeutic effect on liver damage. 1 μM TSA and 20 μM 5-aza-dC were added to standard hepatogenic medium especially at differentiation and maturation steps and their potential function on hepatic differentiationin vitroandin vivowas determined. Exposure of rBM-MSCs to 1 μM TSA at both the differentiation and maturation steps considerably improved hepatic differentiation. TSA enhanced the development of the hepatocyte shape, promoted the chronological expression of hepatocyte-specific markers, and improved hepatic functions. In contrast, treatment of rBM-MSCs with 20 μM 5-aza-dC alone or in combination with TSA was ineffective in improving hepatic differentiationin vitro. TSA and/or 5-aza-dC derived hepatocytes-like cells failed to improve the therapeutic potential in liver damage. We conclude that HDACis enhance hepatic differentiation in a time-dependent manner, while DNMTis do not induce the hepatic differentiation of rBM-MSCsin vitro. Theirin vivofunction needs further investigation.


Blood ◽  
2005 ◽  
Vol 105 (1) ◽  
pp. 420-425 ◽  
Author(s):  
Stasia A. Anderson ◽  
John Glod ◽  
Ali S. Arbab ◽  
Martha Noel ◽  
Parwana Ashari ◽  
...  

Abstract Bone marrow-derived endothelial precursor cells incorporate into neovasculature and have been successfully used as vehicles for gene delivery to brain tumors. To determine whether systemically administered Sca1+ bone marrow cells labeled with superparamagnetic iron oxide nanoparticles can be detected by in vivo magnetic resonance imaging in a mouse brain tumor model, mouse Sca1+ cells were labeled in vitro with ferumoxides-poly-l-lysine complexes. Labeled or control cells were administered intravenously to glioma-bearing severe combined immunodeficient (SCID) mice. Magnetic resonance imaging (MRI) was performed during tumor growth. Mice that received labeled cells demonstrated hypointense regions within the tumor that evolved over time and developed a continuous dark hypointense ring at a consistent time point. This effect was not cleared by administration of a gadolinium contrast agent. Histology showed iron-labeled cells around the tumor rim in labeled mice, which expressed CD31 and von Willebrand factor, indicating the transplanted cells detected in the tumor have differentiated into endothelial-like cells. These results demonstrate that MRI can detect the incorporation of magnetically labeled bone marrow-derived precursor cells into tumor vasculature as part of ongoing angiogenesis and neovascularization. This technique can be used to directly identify neovasculature in vivo and to facilitate gene therapy by noninvasively monitoring these cells as gene delivery vectors. (Blood. 2005;105:420-425)


Sign in / Sign up

Export Citation Format

Share Document