scholarly journals A topological model for chromatin transcription and a role for nucleosome linkers

FEBS Letters ◽  
1983 ◽  
Vol 162 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Sergei A. Grigoryev ◽  
Igor A. Krasheninnikov
Keyword(s):  
1993 ◽  
Vol 268 (8) ◽  
pp. 5417-5424
Author(s):  
J.P. Bourdineaud ◽  
D. Heierli ◽  
M. Gamper ◽  
H.J. Verhoogt ◽  
A.J. Driessen ◽  
...  

2021 ◽  
pp. 50-60
Author(s):  
A.A. Antsifirov ◽  
V.A. Krivoshein

The research presented in the article is devoted to the selection of the electric motor of the hydraulic press drive with a nominal force of 5MN. The article presents the main characteristics and the description of the press operation using the means of mechanization of the technological process of pressure treatment. Using the Deform-3D software package, the process of stamping the crosspiece of the ZIL-130 cardan shaft was simulated. Based on the presented hydraulic scheme of the press, its topological model was formed in the PA-9 software package. The deformation force obtained in the course of modeling the technological process of stamping was used in the topological model of the press. Using a tabular cyclogram, the sequence of actuation of the end switches and hydraulic distributors during the stamping process is shown. In the article, two variants of engine operation were analyzed. Based on the results of the conducted research, it is necessary to focus on the second version of the 55 kW engine, the operation of which will provide the required characteristics of the hydraulic drive of the press, which in turn will allow for technological stamping operations. The simulation tools allow providing estimated information when selecting the necessary tools to ensure the optimal characteristics of hydraulic press drives. The article considered the variation of electric motors that differ from each other in nominal characteristics, with constant characteristics of the pump. For more accurate estimates of energy savings during the operation of the hydraulic drive, it is necessary to vary the characteristics of the pump in the simulation, and the best option is to form an experiment planning matrix when combining the characteristics of the electric motor and the hydraulic pump. This approach ultimately allows forming a function for which one can select a hydraulic drive from existing brands of electric motors and hydraulic pumps for presses of the corresponding range of nominal force.


2016 ◽  
Vol 28 (4) ◽  
pp. 472-507 ◽  
Author(s):  
MARIE KERJEAN ◽  
CHRISTINE TASSON

In this paper, we describe a denotational model of Intuitionist Linear Logic which is also a differential category. Formulas are interpreted as Mackey-complete topological vector space and linear proofs are interpreted as bounded linear functions. So as to interpret non-linear proofs of Linear Logic, we use a notion of power series between Mackey-complete spaces, generalizing entire functions in $\mathbb{C}$. Finally, we get a quantitative model of Intuitionist Differential Linear Logic, with usual syntactic differentiation and where interpretations of proofs decompose as a Taylor expansion.


1975 ◽  
Vol IECI-22 (4) ◽  
pp. 519-522 ◽  
Author(s):  
K. Sankara Rao ◽  
M. N. S. Swamy ◽  
V. Rajagopalan

Author(s):  
Z. Hou ◽  
H. K. Lam ◽  
J. Li ◽  
H. L. Wang ◽  
L. T. P. Chen ◽  
...  

1974 ◽  
Vol 81 (2) ◽  
pp. 159-171 ◽  
Author(s):  
Abraham Robinson

2021 ◽  
Vol 9 (1) ◽  
pp. 41-45
Author(s):  
Elena Kitayceva ◽  
Igor Petukhov

Currently, the digitalization of construction projects is becoming a reality. The energy model of a build-ing (BEM) is being introduced into the design practice, which does not allow directly solving the prob-lems of designing engineering systems of a building. There is a gap in approaches to building a digital building information model. On the one hand, there is the maximum use of information from the digital model during design calculations. On the other hand, there is a simplification of mathematical models for solving problems related to the design of engineering systems. Many important tasks of design and op-eration of engineering systems are not solved in conjunction with the premises of the building. It is pro-posed to use the representation of the building as a graph, which will allow you to solve the problems of design and operation of engineering systems correctly. Most of the necessary information is already pre-sent in the building information model and can be extracted from it automatically. As an example of con-verting information from a digital model, the problem of determining the heat loss of premises was cho-sen. This task is a mandatory part of any project. Existing software products do not allow you to automat-ically determine the dimensions of the enclosing structures of the room that are necessary for solving the problem, and do not take into account the relative location of the premises. These reasons determine the need to develop the application. Materials and methods: To solve the problems of design and operation of engineering systems of a building, it is proposed to use a topological model of a building, which is a connected graph, the compo-nents of which are a base subgraph describing the connections between the premises of the building and subgraphs of engineering systems. The data structure and algorithm for forming a basic building sub-graph based on a digital building model are presented Results: The software application that implements the proposed algorithm was tested on the calculation of heat loss in the premises of a building. A 3D model of a 10-storey residential building was used as the object of the experiment. As a result of the experiment, a reduction in the time required for the prepara-tion of the initial information and for the calculation was revealed from 8 hours to 20 minutes.. Conclusions: Taking into account the relative location of building premises and life support systems in the topological model of the building allows solving problems of environmental and fire safety, optimiz-ing design solutions for supply, exhaust, smoke ventilation systems and other tasks. The developed soft-ware module designed for calculating the heat loss of premises is the first step in the development of software products that use a digital model of a building as the initial information for building a topologi-cal model.


Sign in / Sign up

Export Citation Format

Share Document