scholarly journals Dry coating for basement walls

1879 ◽  
Vol 107 (4) ◽  
pp. 277
Author(s):  
C.
Keyword(s):  
Author(s):  
Juan S. Gómez Bonilla ◽  
Björn Düsenberg ◽  
Franz Lanyi ◽  
Patrik Schmuki ◽  
Dirk W. Schubert ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Dongdong Wang ◽  
Qizhang Yan ◽  
Mingqian Li ◽  
Hongpeng Gao ◽  
Jianhua Tian ◽  
...  

Nickel (Ni)-rich layered oxides such as LiNi0.6Co0.2Mn0.2O2 (NCM622) represent one of the most promising candidates for the next-generation high-energy lithium-ion batteries (LIBs). However, the pristine Ni-rich cathode materials usually suffer...


2016 ◽  
Vol 17 (1) ◽  
pp. 95-106 ◽  
Author(s):  
Peter Rose ◽  
Simon Hager ◽  
Karl Glas ◽  
Dirk Rehmann ◽  
Thomas Hofmann

Dry as well as wet coating techniques were developed to coat glass beads as filter media to remove manganese from water. For dry coating, powdered manganese oxide ore was fixed on the media surface. Wet coating was achieved by depositing synthetic manganese oxides onto the bead surface. The media were characterized by electron microscopy as well as by testing the removal of Mn2+ in a continuous stirred tank reactor. Image analysis of microscopic pictures illustrated that the surface area could partly be coated by powdered material using dry coating methods, whereas complete coverage was achieved using wet coating approaches. With regard to dry coating techniques, Mn sorption uptake was higher for the adhesively dry coated glass beads than for beads where a binding agent was used. The wet coating column approach proved to be more successful than the coating of beads in a stirred tank reactor. Mn removal capability of the beads increased with higher reactant concentrations during coating. Oxide-coated glass beads applied in filter systems have the potential to improve conventional demanganization processes.


2021 ◽  
Vol 11 (6) ◽  
pp. 176-187
Author(s):  
Mahammed Athar Alli Saikh ◽  
Prithwiraj Mohapatra

The manuscript aims to provide glimpse on updated information relating thermo-mechanical dry coating processes (TMDCP) suiting in modifying surface attributes of fine and ultra-fine particle (FiUlFiP). FiUlFiPs are the integral component of pharmaceutical processes. They exhibit complex and queer properties, are conferred mostly from their surface attributes colligated with their higher surface area. Particle engineering technocrats extensively working for modifying surface & surface attributes of FiUlFiPs. These efforts are to find their worthy applications & new functionalities. Among available diverse particle engineering technologies/ process, TMDCP, a dry coating process (DCP), advocated being worthy and efficient. The TMDCP finds multidisciplinary applications, mostly in drug development & drug delivery. Said DCP involves fixing and/or attaching coating material (CoM) as particles herein synonym guest particle (GP) onto core/substrate particle (CSP) herein synonym host particle (HP). Attaching/ fixing the GPs onto HPs, in TMDCP, involve their mechanical and/or thermal interactions. Scientific literatures are evidencing diverse techniques and/or process, basing on discussed interactions. Amongst them novel techniques/ processes are Hybridization, Magnetically assisted impaction coating process (MAICP), Mechanofusion, Theta-composer, and high shear compaction. In this area diverse devices/ equipments are prevailing in market. Important are Hybridizer, Magnetically assisted impaction coater (MAIC), Theta-composer, Mechanofusion, Quadro Comil®, Cyclomix®, and many others. Attempt of this article is to discuss and present their method of working, working principle, applicability, limitations, and benefits. Contained information might be beneficial for professionals of pharmaceutical and allied field. Keywords: dry coating, equipment, particles, processes, thermo-mechanical.


1988 ◽  
Vol 36 (3-4) ◽  
pp. 837-845 ◽  
Author(s):  
M. Hashimoto ◽  
S. Miyajima ◽  
W. Ito ◽  
S. Ito ◽  
T. Murata ◽  
...  

2013 ◽  
Vol 102 (7) ◽  
pp. 2282-2296 ◽  
Author(s):  
Xi Han ◽  
Laila Jallo ◽  
Daniel To ◽  
Chinmay Ghoroi ◽  
Rajesh Davé

Author(s):  
Mahdi Taiebat ◽  
W. D. Liam Finn ◽  
Alireza Ahmadnia ◽  
Elnaz Amirzehni ◽  
Carlos E. Ventura

2021 ◽  
Vol 03 (04) ◽  
pp. 70-78
Author(s):  
Tulakov Elmurad Salomovich ◽  
◽  
Matyokubov Bobur Pulatovich ◽  

If the surface temperature of any building material drops sharply without changing the humidity and the surface temperature is lower than the dew point temperature, dew-like water droplets are formed on the surface of this material. This condition is called condensing humidity condition. Condensation moisture formed on the surfaces of building materials and external barriers is slowly absorbed into the body of building materials over time, increasing the relative humidity of this structure. Condensation moisture can be observed when the temperature of the surfaces of external barrier structures drops sharply. This condition can be observed everywhere where the basement is connected to the outer walls of the basement. The article deals with the issue of thermal insulation and calculation of basement walls of modern energy-efficient buildings, which are widely used in the country and abroad.


Sign in / Sign up

Export Citation Format

Share Document