Void fraction and incipient point of boiling during the subcooled nucleate flow boiling of water

1977 ◽  
Vol 20 (4) ◽  
pp. 409-419 ◽  
Author(s):  
H.C. Ünal
Keyword(s):  
Author(s):  
Brian J. Daniels ◽  
James A. Liburdy ◽  
Deborah V. Pence

Experimental results of adiabatic boiling of water flowing through a fractal-like branching microchannel network are presented and compared to numerical simulations for identical flow conditions. The fractal-like branching channel network had channel length and width ratios between adjacent branching levels of 0.7071, a total flow length of 18 mm, a channel height of 150 μm and a terminal channel width of 100 μm. The channels were DRIE etched into a silicon disk and pyrex was anodically bonded to the silicon to form the channel top and allowed visualization of the flow within the channels. The water flowed from the center of the disk where the inlet was laser cut through the silicon to the periphery of the disc. The flow rates ranged from 100 to 225 g/min and the inlet subcooling levels varied from 0.5 to 6 °C. Pressure drop across the channel as well as void fraction in each branching level were measured for each of the test conditions. The measured pressure drop ranged from 20 to 90 kPa, and the measured void fraction ranged from 0.3 to 0.9. The pressure drop results agree well with the numerical predictions. The measured void fraction results followed the same trends as the numerical results.


2016 ◽  
Vol 78 (8-4) ◽  
Author(s):  
Agus Sunjarianto Pamitran ◽  
Sentot Novianto ◽  
Normah Mohd-Ghazali ◽  
Nasruddin Nasruddin ◽  
Raldi Koestoer

Two-phase flow boiling pressure drop experiment was conducted to observe its characteristics and to develop a new correlation of void fraction based on the separated model. Investigation is completed on the natural refrigerant R-290 (propane) in a horizontal circular tube with a 7.6 mm inner diameter under experimental conditions of 3.7 to 9.6 °C saturation temperature, 10 to 25 kW/m2 heat flux, and 185 to 445 kg/m2s mass flux. The present experimental data was used to obtain the calculated void fraction which then was compared to the predicted void fraction with 31 existing correlations. A new void fraction correlation for predicting two-phase flow boiling pressure drop, as a function of Reynolds numbers, was proposed. The measured pressure drop was compared to the predicted pressure drop with some existing pressure drop models that use the newly developed void fraction model. The homogeneous model of void fraction showed the best prediction with 2% deviation


Author(s):  
Shintaro Sakamoto ◽  
Hiroki Ohori ◽  
Koji Enoki ◽  
Tomio Okawa

In predicting the void fraction in subcooled flow boiling, accurate evaluation of single bubble behaviors is of considerable importance. In particular, bubble lift-off velocity affects the void fraction significantly since the bubble disappear quickly due to heat transfer with subcooled liquid if the lift-off velocity is high. In this study, the process of bubble lift-off was experimentally investigated to develop mechanistic correlations for the bubble lift-off velocity. In the development of the correlations, it was assumed that the bubble lift-off velocity in the horizontal direction is proportional to the bubble growth rate and that in the vertical direction is determined primarily by the local liquid velocity evaluated at the bubble center position. Then, impact of the bubble lift-off velocity on the void fraction was explored through numerical simulations. In the simulations, the bubble lift-off velocity in the lateral direction was parametrically changed. It was shown that the mean void fraction decreases with an increase in the lateral bubble lift-off velocity since the bubble condensation is enhanced. It was therefore confirmed that accurate evaluation of the bubble lift-off velocity is important for high accuracy prediction of the void fraction.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5987
Author(s):  
Jerol Soibam ◽  
Achref Rabhi ◽  
Ioanna Aslanidou ◽  
Konstantinos Kyprianidis ◽  
Rebei Bel Fdhila

Subcooled flow boiling occurs in many industrial applications where enormous heat transfer is needed. Boiling is a complex physical process that involves phase change, two-phase flow, and interactions between heated surfaces and fluids. In general, boiling heat transfer is usually predicted by empirical or semiempirical models, which are horizontal to uncertainty. In this work, a data-driven method based on artificial neural networks has been implemented to study the heat transfer behavior of a subcooled boiling model. The proposed method considers the near local flow behavior to predict wall temperature and void fraction of a subcooled minichannel. The input of the network consists of pressure gradients, momentum convection, energy convection, turbulent viscosity, liquid and gas velocities, and surface information. The outputs of the models are based on the quantities of interest in a boiling system wall temperature and void fraction. To train the network, high-fidelity simulations based on the Eulerian two-fluid approach are carried out for varying heat flux and inlet velocity in the minichannel. Two classes of the deep learning model have been investigated for this work. The first one focuses on predicting the deterministic value of the quantities of interest. The second one focuses on predicting the uncertainty present in the deep learning model while estimating the quantities of interest. Deep ensemble and Monte Carlo Dropout methods are close representatives of maximum likelihood and Bayesian inference approach respectively, and they are used to derive the uncertainty present in the model. The results of this study prove that the models used here are capable of predicting the quantities of interest accurately and are capable of estimating the uncertainty present. The models are capable of accurately reproducing the physics on unseen data and show the degree of uncertainty when there is a shift of physics in the boiling regime.


Sign in / Sign up

Export Citation Format

Share Document