The method of characteristics applied to numerical solutions of gas bubble implosion and fragmentation

1982 ◽  
Vol 25 (8) ◽  
pp. 1103-1111 ◽  
Author(s):  
W.M. Sluyter ◽  
S.J.D. Van Stralen ◽  
W. Zijl
1996 ◽  
Vol 154 ◽  
pp. 149-153
Author(s):  
S. T. Wu ◽  
A. H. Wang ◽  
W. P. Guo

AbstractWe discuss the self-consistent time-dependent numerical boundary conditions on the basis of theory of characteristics for magnetohydrodynamics (MHD) simulations of solar plasma flows. The importance of using self-consistent boundary conditions is demonstrated by using an example of modeling coronal dynamic structures. This example demonstrates that the self-consistent boundary conditions assure the correctness of the numerical solutions. Otherwise, erroneous numerical solutions will appear.


2010 ◽  
Vol 132 (8) ◽  
Author(s):  
Reza Baghaei Lakeh ◽  
Majid Molki

A computational investigation is conducted to study the patterns of airflow induced by corona discharge in the cross section of a circular tube. The secondary flow induced by corona wind in various flow passages has been the subject of numerous investigations. The flow patterns are often identified by multiple recirculation bubbles. Such flow patterns have also been anticipated for circular cross sections where the corona discharge is activated by an electrode situated at the center of the cross section. In this investigation, it is shown that, contrary to public perception, a symmetric corona discharge does not generate a secondary flow in circular cross sections. This investigation then proceeds to demonstrate that the flow responsible for thermal enhancements in circular tubes often reported in the published literature is induced only when there is a slight asymmetry in the position of the electrode. The present computations are performed in two parts. In part one, the electric field equations are solved using the method of characteristics. In part two, the flow equations are solved using a finite-volume method. It is shown that the method of characteristics effectively eliminates the dispersion errors observed in other numerical solutions. The present computations show that the flow in the eccentric configuration is characterized by a corona jet that is oriented along the eccentricity direction and two recirculation zones situated on either sides of the jet. In addition to the computational approach, a number of analytical solutions are presented and compared with the computational results.


1991 ◽  
Vol 58 (2) ◽  
pp. 554-558 ◽  
Author(s):  
J. L. Wegner ◽  
L. Jiang ◽  
J. B. Haddow

Governing equations for finite amplitude wave propagation in stretched hyperelastic strings are given in recent papers, (Beatty and Haddow, 1985), along with similarity solutions for symmetrically plucked and impacted strings. The similarity solutions are valid until the first reflections at the fixed ends and in this paper we consider symmetrically plucked Mooney-Rivlin strings and investigate the response after reflections. The method of characteristics is applied to extend the results of the similarity solutions and to obtain solutions for the interaction of a reflected longitudinal shock and incident transverse shock and the reflection of an incident transverse shock. A deformed shape, which is not intuitively obvious, is predicted by the solution of the interaction problem and is confirmed by an experimental study. A finite difference scheme is used to obtain numerical solutions, which are valid after multiple wave interactions and reflections occur. Solutions obtained by the method of characteristics are used as a partial check on the numerical results.


The equations of the steady state, compressible inviscid gaseous flow are linearized in a form suitable for application to nozzles of the Laval type. The procedure in the supersonic phase is verified by comparing solutions so obtained with those derived by the method of characteristics in two and three dimensions. Likewise, the solutions in the transonic phase are com pared with those obtained by other investigators. The linearized equation is then used to investigate the nat re of non-symmetric flow in rocket nozzles. It is found that if the flow from the combustion chamber into the nozzle is non-symmetric, the magnitude and direction of the turning couple produced by the emergent jet is dependent on the profile of the nozzle and it is possible to design profiles such that the turning couples or lateral forces are zero. The optimum nozzle so designed is independent of the pressure and also of the magnitude of the non-symmetry of the entry flow. The formulae by which they are obtained have been checked by extensive static and projection tests with simulated rocket test vehicles which are described in this paper.


1978 ◽  
Vol 100 (4) ◽  
pp. 690-696 ◽  
Author(s):  
A. D. Anderson ◽  
T. J. Dahm

Solutions of the two-dimensional, unsteady integral momentum equation are obtained via the method of characteristics for two limiting modes of light gas launcher operation, the “constant base pressure gun” and the “simple wave gun”. Example predictions of boundary layer thickness and heat transfer are presented for a particular 1 in. hydrogen gun operated in each of these modes. Results for the constant base pressure gun are also presented in an approximate, more general form.


Sign in / Sign up

Export Citation Format

Share Document