Experimental studies of some opto-electronic properties of thin films of galena

1982 ◽  
Vol 22 (2) ◽  
pp. 81-89 ◽  
Author(s):  
N.M. Ravindra ◽  
V.K. Srivastava
Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1023
Author(s):  
María Elena Sánchez-Vergara ◽  
Leon Hamui ◽  
Elizabeth Gómez ◽  
Guillermo M. Chans ◽  
José Miguel Galván-Hidalgo

The synthesis of four mononuclear heptacoordinated organotin (IV) complexes of mixed ligands derived from tridentated Schiff bases and pyrazinecarboxylic acid is reported. This organotin (IV) complexes were prepared by using a multicomponent reaction, the reaction proceeds in moderate to good yields (64% to 82%). The complexes were characterized by UV-vis spectroscopy, IR spectroscopy, mass spectrometry, 1H, 13C, and 119Sn nuclear magnetic resonance (NMR) and elemental analysis. The spectroscopic analysis revealed that the tin atom is seven-coordinate in solution and that the carboxyl group acts as monodentate ligand. To determine the effect of the substituent on the optoelectronic properties of the organotin (IV) complexes, thin films were deposited, and the optical bandgap was obtained. A bandgap between 1.88 and 1.98 eV for the pellets and between 1.23 and 1.40 eV for the thin films was obtained. Later, different types of optoelectronic devices with architecture “contacts up/base down” were manufactured and analyzed to compare their electrical behavior. The design was intended to generate a composite based on the synthetized heptacoordinated organotin (IV) complexes embedded on the poly(3,4-ethylenedyoxithiophene)-poly(styrene sulfonate) (PEDOT:PSS). A Schottky curve at low voltages (<1.5 mV) and a current density variation of as much as ~3 × 10−5 A/cm2 at ~1.1 mV was observed. A generated photocurrent was of approximately 10−7 A and a photoconductivity between 4 × 10−9 and 7 × 10−9 S/cm for all the manufactured structures. The structural modifications on organotin (IV) complexes were focused on the electronic nature of the substituents and their ability to contribute to the electronic delocalization via the π system. The presence of the methyl group, a modest electron donor, or the non-substitution on the aromatic ring, has a reduced effect on the electronic properties of the molecule. However, a strong effect in the electronic properties of the material can be inferred from the presence of electron-withdrawing substituents like chlorine, able to reduce the gap energies.


2021 ◽  
Vol 118 ◽  
pp. 111238
Author(s):  
A. Timoumi ◽  
W. Belhadj ◽  
S.N. Alamri ◽  
M.K. Al Turkestani

2002 ◽  
Vol 420-421 ◽  
pp. 312-317 ◽  
Author(s):  
R Sanjinés ◽  
O Banakh ◽  
C Rojas ◽  
P.E Schmid ◽  
F Lévy

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 251
Author(s):  
Peter Swekis ◽  
Aleksandr S. Sukhanov ◽  
Yi-Cheng Chen ◽  
Andrei Gloskovskii ◽  
Gerhard H. Fecher ◽  
...  

Magnetic Weyl semimetals are newly discovered quantum materials with the potential for use in spintronic applications. Of particular interest is the cubic Heusler compound Co2MnGa due to its inherent magnetic and topological properties. This work presents the structural, magnetic and electronic properties of magnetron co-sputtered Co2MnGa thin films, with thicknesses ranging from 10 to 80 nm. Polarized neutron reflectometry confirmed a uniform magnetization through the films. Hard x-ray photoelectron spectroscopy revealed a high degree of spin polarization and localized (itinerant) character of the Mn d (Co d) valence electrons and accompanying magnetic moments. Further, broadband and field orientation-dependent ferromagnetic resonance measurements indicated a relation between the thickness-dependent structural and magnetic properties. The increase of the tensile strain-induced tetragonal distortion in the thinner films was reflected in an increase of the cubic anisotropy term and a decrease of the perpendicular uniaxial term. The lattice distortion led to a reduction of the Gilbert damping parameter and the thickness-dependent film quality affected the inhomogeneous linewidth broadening. These experimental findings will enrich the understanding of the electronic and magnetic properties of magnetic Weyl semimetal thin films.


2018 ◽  
Vol 255 ◽  
pp. 871-883 ◽  
Author(s):  
P. Velusamy ◽  
R. Ramesh Babu ◽  
K. Ramamurthi ◽  
E. Elangovan ◽  
J. Viegas ◽  
...  

1995 ◽  
Vol 403 ◽  
Author(s):  
K. Barmak ◽  
C. Michaelsent ◽  
J. Rickman ◽  
M. Dahmstt

AbstractIt is a well known fact that the properties and performance of polycrystalline materials, including polycrystalline thin films, are strongly affected by the grain structure. Therefore, in treating reactive phase formation in these films, it is (or it will inevitably be) necessary to quantify the grain structure of reactant and product phases and its evolution during the course of the reaction. Theoretical models and the conventional view of thin film reactions, however, have been largely extensions, to small and finite dimensions, of theories and descriptions developed for bulk diffusion couples. These models and descriptions primarily focus on the growth stage and to a much lesser extent on the nucleation stage. Consequently, these models and descriptions are not able to treat the development of product phase grain structure. Recent calorimetric investigations of several thin film systems demonstrate the importance of nucleation kinetics (and hence nucleation barriers) in product phase formation and provide quantitative measures of the thermodynamics and kinetics of formation of the product phases, thereby allowing some degree of comparison with reaction models. Furthermore, microstructural investigations of thin-film reactions demonstrate the non-planarity of the growth front and highlight the role of reactant-phase grain boundaries. In this paper, a summary of these experimental studies and recent theoretical treatments, which combine nucleation and growth in an integrated manner, is presented, with particular emphasis on the Nb/Al system. These experiments and models lead to a new view of reactive phase formation and grain structure evolution as one in which the latter is an integral part of the former. Based on this view, directions for future research are discussed.


Sign in / Sign up

Export Citation Format

Share Document