Reactive Phase Formation in Thin Films: Evolution of Grain Structure

1995 ◽  
Vol 403 ◽  
Author(s):  
K. Barmak ◽  
C. Michaelsent ◽  
J. Rickman ◽  
M. Dahmstt

AbstractIt is a well known fact that the properties and performance of polycrystalline materials, including polycrystalline thin films, are strongly affected by the grain structure. Therefore, in treating reactive phase formation in these films, it is (or it will inevitably be) necessary to quantify the grain structure of reactant and product phases and its evolution during the course of the reaction. Theoretical models and the conventional view of thin film reactions, however, have been largely extensions, to small and finite dimensions, of theories and descriptions developed for bulk diffusion couples. These models and descriptions primarily focus on the growth stage and to a much lesser extent on the nucleation stage. Consequently, these models and descriptions are not able to treat the development of product phase grain structure. Recent calorimetric investigations of several thin film systems demonstrate the importance of nucleation kinetics (and hence nucleation barriers) in product phase formation and provide quantitative measures of the thermodynamics and kinetics of formation of the product phases, thereby allowing some degree of comparison with reaction models. Furthermore, microstructural investigations of thin-film reactions demonstrate the non-planarity of the growth front and highlight the role of reactant-phase grain boundaries. In this paper, a summary of these experimental studies and recent theoretical treatments, which combine nucleation and growth in an integrated manner, is presented, with particular emphasis on the Nb/Al system. These experiments and models lead to a new view of reactive phase formation and grain structure evolution as one in which the latter is an integral part of the former. Based on this view, directions for future research are discussed.

Author(s):  
E.L. Veera Prabakaran ◽  
K Senthil Vadivu ◽  
B Mouli Prasanth

Abstract Thin film sensors are used to monitor environmental conditions by measuring the physical parameters. By using thin film technology, the sensors are capable of conducting precise measurements. Moreover, the measurements are stable and dependable. Furthermore, inexpensive sensor devices can be produced. In this paper, thin film technology for the design and fabrication of sensors that are used in various applications is reviewed. Further, the applications of thin film sensors in the fields of biomedical, energy harvesting, optical, and corrosion applications are also presented. From the review, the future research needs and future perspectives are identified and discussed.


1995 ◽  
Vol 398 ◽  
Author(s):  
K. Barmak ◽  
S. Vivekanand ◽  
F. Ma ◽  
C. Michaelsen

ABSTRACTThe formation of the first phase in the reaction of sputter-deposited Nb/Al multilayer thin films has been studied by power-compensated and heat-flux differential scanning calorimetry, x-ray diffraction and transmission electron microscopy. The modulation periods of the films are in the range of 10-500 nm. Both types of calorimetrie measurements, performed at a constant heating rate, show the presence of two peaks (A and B) for the formation of the single product phase, NbAl3. Isothermal calorimetrie scans show that peak A is associated with a nucleation and growth type transformation. The formation of NbAl3 is thus interpreted as a two-stage process of nucleation and lateral growth to coalescence (peak A) followed by normal growth until the consumption of one or both reactants (peak B). Transmission electron microscopy investigations of samples annealed into the first stage of NbAl3 formation show the presence of this phase at the Nb/Al interface and its preferential growth along the grain boundaries of the Al layer. The latter highlights the role of reactant phase grain structure in product phase formation.


1991 ◽  
Vol 230 ◽  
Author(s):  
Katayun Barmak ◽  
Kevin R. Coffey ◽  
David A. Rudman ◽  
Simon Foner

AbstractWe investigated the phase formation sequence in the reaction of multilayer thin films of Nb/Al with overall compositions of 25 and 33 at.% AI. We report novel phenomena which distinguish thin-film reactions unequivocally from those in bulk systems. For sufficiently thin layers composition and stability of product phases are found to deviate significantly from that predicted from the equilibrium phase diagram. We demonstrate that in the Nb/Al system the length scales below which such deviations occur is about 150 nm. We believe that these phenomena occur due to the importance of grain boundary diffusion and hence microstructure in these thin films.


1992 ◽  
Vol 280 ◽  
Author(s):  
Qiuming Yu ◽  
Paulette Clancy

ABSTRACTThe equilibrium structure of a variety of Si1−xGex/Si heterostructures have been simulated by Molecular Dynamics, modeled by the Stillinger-Weber potential, to investigate the effect of strain on the surfaces of SiGe thin Alms. It was found that the strain in SiGe/Si(100) thin films was relaxed by the segregation of Ge to the surface. Rebonding of sub-surface atoms into dimers in the presence of a vacancy or cluster of vacancies above them was observed in the ensuing surface reconstruction. For SiGe/Si, the amount of “re-bonded missing dimers” in the top two layers increased with increasing Ge composition. But for Ge/Si(100), a V-shaped twinning defect was observed in the Ge thin film. To further investigate the effect of strain on surface reconstruction, bulk Si and Ge structures were also studied. For bulk Si, several rebonded missing dimers were found at the surface, while for bulk Ge(100), the surface showed a typical 2×1 reconstruction. All these findings corroborate recent experimental studies and theoretical predictions.


1993 ◽  
Vol 8 (6) ◽  
pp. 1361-1367 ◽  
Author(s):  
Cheol Seong Hwang ◽  
Hyeong Joon Kim

ZrO2 thin films were deposited at 1 atm on Si substrates by oxidation-assisted thermal decomposition of zirconium-trifluoroacetylacetonate in the temperature range of 300–615 °C. Above a deposition temperature of 400 °C, the deposited thin films have a columnar grain structure, where each grain is perpendicular to the substrate surface with a c-axis preferred crystallographic orientation, and have poor electrical characteristics as a dielectric thin film. But the thin film deposited at 350 °C has a fine equiaxed microcrystalline structure and has superior electrical characteristics of a breakdown field of 1 MV/cm and a relative dielectric constant of 27.


1997 ◽  
Vol 504 ◽  
Author(s):  
Connie P. Wang ◽  
Khiem B. Do ◽  
Ann F. Marshall ◽  
Theodore H. Geballe ◽  
Malcolm R. Beasley ◽  
...  

ABSTRACTIn-plane aligned MgO thin films (∼100Å) have been obtained on various amorphous substrates by Ar+ ion-assisted electron-beam evaporation. Based on RHEED and cross-section TEM, we have shown that the MgO texture appears at a very early stage of film growth and is optimized at a thickness of around 100Å. Optimal thickness is the stage at which the surface is fully covered by MgO crystallites. The planar-view TEM of grain structure evolution in samples at different stages of growth reveals the dynamics of the texture developing process. Small, (100)-faceted MgO grains were observed both in planar-view and cross-section TEM images.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 734
Author(s):  
Yuanjie Shu ◽  
Liaoliang Ke ◽  
Jie Su ◽  
Fei Shen

This paper discusses an in-depth experimental study on the fretting wear behavior of PVDF (polyvinylidene fluoride) piezoelectric thin film against a Si3N4 ceramic sphere under air conditions. A fretting wear device with a ball-on-plate contact configuration was applied. The changes of displacement amplitude, normal force, and applied voltage were taken into account. The friction logs were used to determine the contact state of the PVDF thin film during the fretting test. The 3D topography instrument and scanning electron microscope (SEM) were used to measure the details of the surface morphology and wear volume. The test results of PVDF thin films under different normal force, displacement amplitude, and applied voltage are summarized through the collection and analysis of experimental data. It is shown that the creep and plastic deformation lead to obvious winkles at the contact surface, which may decrease the specific wear rate of PVDF thin films.


2010 ◽  
Vol 1247 ◽  
Author(s):  
Manish Kumar ◽  
Shu Xiang ◽  
P. Markondeya Raj ◽  
Isaac Robin Abothu ◽  
Jin-Hyun Hwang ◽  
...  

AbstractThere is an increasing need for integrating high dielectric constant ceramic thin film components in organic and 3D IC packages to lower the power-supply impedance at high frequencies and supply noise-free power to the ICs. Sol-gel approach is very attractive for high density capacitors because of its ability to precisely control the composition of the films and the ease of introducing dopants to engineer the dielectric properties such as breakdown voltages and DC leakage characteristics. Thin films on copper foils lend themselves to organic package integration with standard foil lamination techniques used in package build-up processes. However, fabrication of thin film barium titanate on copper foils is generally affected by process incompatibility during crystallization in reducing atmospheres, leading to poor crystallization, oxygen vacancies and copper diffusion through the film that degrades the electrical properties.This paper focuses on the dielectric properties and electrical reliability of thin films on copper foils. Thin film (300-400 nm) embedded capacitors with capacitance density of 2 μF/cm2, low leakage current and high breakdown voltage were fabricated via sol-gel technology and foil lamination. To lower the leakage current, the chemical composition was altered by incorporating – 1.) Excess barium 2.) Acceptor dopants such as Mn. Both approaches lowered the leakage current compared to that of pure barium titanate. SEM analysis showed enhanced densification and refined grain structure with chemistry modification. The films showed good stability in leakage currents at 150 C with an applied field strength of 100 kV/cm, demonstrating the electrical reliability of these films.


1995 ◽  
Vol 382 ◽  
Author(s):  
K. Barmak ◽  
C. Michaelsen ◽  
R. Bormann ◽  
G. Lucadamo

ABSTRACTWe have investigated reactive phase formation in magnetron sputter-deposited Ni/Al multilayer thin films with a 3:1 molar ratio and periodicities ranging from 2.5-320 nm. In addition, we studied the transformation of a codeposited film of the same composition. We find that an amorphous phase has already formed during deposition, and that the extentof formation of this phase increases with decreasing periodicity. The first crystalline phase then nucleates from this amorphous phase upon annealing. The formation of the amorphous phase considerably reduces the driving force and explains why during subsequent reactions nucleation kinetics become important. We obtain Ni2Al9 as the first product phase during heat treatment in some cases before NiAl3 occurs. For films with modulation periods larger than 40 nm, formation of NiAI3 is a two stage process as reported earlier, with the first stage being due to nucleation and growth to coalescence of NiAl3 grains, and the second stage being the growth of NiA13 normal to the initial interface until the reactant phases are consumed.


2004 ◽  
Vol 843 ◽  
Author(s):  
James M.E. Harper

ABSTRACTIon bombardment during deposition may simultaneously affect thin film topography, composition and crystallographic texture. Ion etching can produce periodic ripples that depend on the angle of ion incidence and surface temperature. When applied during deposition, ion bombardment can produce in-plane crystallographic orientation in polycrystalline materials for specific angles of incidence. In addition, ion bombardment changes the composition of multicomponent thin films according to the local angles of ion incidence and ion/atom ratios. Therefore, these three mechanisms may be linked under certain deposition conditions to generate novel topographically patterned materials with locally controlled composition and texture. Examples include metal alloys, oxides and nitrides, and recommendations for specific nanoscale structures are given.


Sign in / Sign up

Export Citation Format

Share Document