DNA synthesis during early development of Drosophila melanogaster

1974 ◽  
Vol 4 (4) ◽  
pp. 381-394 ◽  
Author(s):  
Susan J. Friedman ◽  
Philip J. Skehan ◽  
Mary Lake Polan ◽  
Anne Fausto-Sterling ◽  
P.R. Brown
2001 ◽  
Vol 7 (S2) ◽  
pp. 1012-1013
Author(s):  
Uyen Tram ◽  
William Sullivan

Embryonic development is a dynamic event and is best studied in live animals in real time. Much of our knowledge of the early events of embryogenesis, however, comes from immunofluourescent analysis of fixed embryos. While these studies provide an enormous amount of information about the organization of different structures during development, they can give only a static glimpse of a very dynamic event. More recently real-time fluorescent studies of living embryos have become much more routine and have given new insights to how different structures and organelles (chromosomes, centrosomes, cytoskeleton, etc.) are coordinately regulated. This is in large part due to the development of commercially available fluorescent probes, GFP technology, and newly developed sensitive fluorescent microscopes. For example, live confocal fluorescent analysis proved essential in determining the primary defect in mutations that disrupt early nuclear divisions in Drosophila melanogaster. For organisms in which GPF transgenics is not available, fluorescent probes that label DNA, microtubules, and actin are available for microinjection.


Genetics ◽  
1996 ◽  
Vol 144 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Leonard G Robbins

Abstract Rex is a multicopy genetic element that maps within an X-linked ribosomal RNA gene (rDNA) array of D. melanogaster. Acting maternally, Rex causes recombination between rDNA arrays in a few percent of early embryos. With target chromosomes that contain two rDNA arrays, the exchanges either delete all of the material between the two arrays or invert the entire intervening chromosomal segment. About a third of the embryos produced by Rex homozygotes have cytologically visible chromosome damage, nearly always involving a single chromosome. Most of these embryos die during early development, displaying a characteristic apoptosis-like phenotype. An experiment that tests whether the cytologically visible damage is rDNA-specific is reported here. In this experiment, females heterozygous for Rex and an rDNA-deficient X chromosome were crossed to males of two genotypes. Some of the progeny from the experimental cross entirely lacked rDNA, while all of the progeny from the control cross had at least one rDNA array. A significantly lower frequency of early-lethal embryos in the experimental cross, proportionate to the fraction of rDNA-deficient embryos, demonstrates that Rex preferentially damages rDNA.


1968 ◽  
Vol 17 (5) ◽  
pp. 544-561 ◽  
Author(s):  
Sohan P. Modak ◽  
Georgia Morris ◽  
Tuneo Yamada

Chromosoma ◽  
1974 ◽  
Vol 47 (4) ◽  
pp. 403-413 ◽  
Author(s):  
Klaus H�gele ◽  
Wolf -Ekkehard Kalisch

Development ◽  
1983 ◽  
Vol 77 (1) ◽  
pp. 167-182
Author(s):  
Giorgio Graziosi ◽  
Franco de Cristini ◽  
Angelo di Marcotullio ◽  
Roberto Marzari ◽  
Fulvio Micali ◽  
...  

The early embryo of Drosophila melanogaster did not survive treatment at 37 °C (heat shock) for 25 min. The histological analysis of eggs treated in this way showed that the heat shock caused disintegration of nuclei and of cytoplasmic islands, displacement and swelling of nuclei and blocked mitoses. These effects were not observed in embryos treatedafter blastoderm formation. After this stage, we noticed that development was slowed down. The heat shock proteins (hsp 83,70 and 68) were, under shock, synthesized at all developmental stages. There was little or no synthesis of hsp 70 and 68 in unfertilized eggs, but synthesis increased in proportion to the number of nuclei present. Most probably, hsp 70 synthesis was directed by zygotic mRNA. DNA synthesis was not blocked by the heat shock though the overall incorporation of [3H]thymidine was substantially reduced, presumably because of the block of mitoses. We did not find a direct relation between survival pattern and hsp synthesis. We concluded that some, at least, of the heat shock genes can be activated at all developmental stages and that heat shock could be used for synchronizing mitoses.


Development ◽  
1991 ◽  
Vol 113 (4) ◽  
pp. 1357-1364 ◽  
Author(s):  
M. Carmena ◽  
C. Gonzalez ◽  
J. Casal ◽  
P. Ripoll

Most mitotic mutants in Drosophila do not lead to lethality in early development despite the highly abnormal chromosome behaviour that they elicit. This has been explained as being the effect of maternally provided wild-type products. We have tested this hypothesis by studying cuticular clones derived from cells in which there has been loss of a marked Y chromosome due to chromosome nondisjunction in individuals homozygous for the mutation abnormal spindle who are progeny of heterozygous mothers. We have found that the size and frequency of these clones are higher than in control flies. Furthermore, by analysing flies whose female parents have different doses of the asp+ gene, we have found that there is a correlation between the amount of maternally contributed asp+ product and the frequency and size of cuticular clones. We have also estimated the time in development when the first mitotic mistakes take place, i.e. the time when maternal products are no longer sufficient to carry out normal cell division.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rui Feng ◽  
Xin Zhou ◽  
Wei Zhang ◽  
Tao Pu ◽  
Yuting Sun ◽  
...  

1992 ◽  
Vol 38 (10) ◽  
pp. 751-758 ◽  
Author(s):  
Patrick Callaerts ◽  
Jan Geuns ◽  
Arnold De Loof

2019 ◽  
Author(s):  
Ece Kocak ◽  
Sarah Dykstra ◽  
Alexandra Nemeth ◽  
Catherine G. Coughlin ◽  
Kasey Rodgers ◽  
...  

AbstractPIF1 is a 5’ to 3’ DNA helicase that can unwind double-stranded DNA and disrupt nucleic acid-protein complexes. In Saccharomyces cerevisiae, Pif1 plays important roles in mitochondrial and nuclear genome maintenance, telomere length regulation, unwinding of G-quadruplex structures, and DNA synthesis during break-induced replication. Some, but not all, of these functions are shared with other eukaryotes. To gain insight into the evolutionarily conserved functions of PIF1, we created pif1 null mutants in Drosophila melanogaster and assessed their phenotypes throughout development. We found that pif1 mutant larvae exposed to high concentrations of hydroxyurea, but not other DNA damaging agents, experience reduced survival to adulthood. Embryos lacking PIF1 fail to segregate their chromosomes efficiently during early nuclear divisions, consistent with a defect in DNA replication. Furthermore, loss of the BRCA2 protein, which is required for stabilization of stalled replication forks in metazoans, causes synthetic lethality in third instar larvae lacking either PIF1 or the polymerase delta subunit POL32. Interestingly, pif1 mutants have a reduced ability to synthesize DNA during repair of a double-stranded gap, but only in the absence of POL32. Together, these results support a model in which Drosophila PIF1 functions with POL32 during times of replication stress but acts independently of POL32 to promote synthesis during double-strand gap repair.


Sign in / Sign up

Export Citation Format

Share Document