Mechanical properties of metaphyseal bone in the proximal femur

1991 ◽  
Vol 24 (5) ◽  
pp. 317-329 ◽  
Author(s):  
Jeffrey C. Lotz ◽  
Tobin N. Gerhart ◽  
Wilson C. Hayes
1987 ◽  
Vol 20 (9) ◽  
pp. 917
Author(s):  
Patricia Freeman ◽  
Craig Olson ◽  
Thomas P. Andriacchi

Author(s):  
Pablo Vasquez ◽  
Natalia Nun˜o

A personalized 3D model of the proximal femur is reconstructed from medical CT-scan images. The mechanical properties of the cortical and spongious bones are extracted from the medical images. A finite element model of a personalized total hip arthroplasty is developed to investigate the effect of residual stresses due to cement curing in the load transfer during simplified heel strike.


1990 ◽  
Vol 14 (1) ◽  
pp. 107-114 ◽  
Author(s):  
Jeffrey C. Lotz ◽  
Tobin N. Gerhart ◽  
Wilson C. Hayes

Author(s):  
X. Sherry Liu ◽  
Adi Cohen ◽  
Perry T. Yin ◽  
Joan M. Lappe ◽  
Robert R. Recker ◽  
...  

High-resolution peripheral quantitative computed tomography (HR-pQCT) is a promising clinical tool that permits separate measurements of trabecular and cortical bone compartments at the distal radius and tibia. It has an isotropic voxel size of 82 μm, which is high enough to assess the fine microstructural details of trabecular architecture. HR-pQCT images can also be used for building microstructural finite element (μFE) models to estimate the mechanical competence of whole bone segments. Melton et al. showed that derived bone strength parameters (axial rigidity and fall load to failure load ratio) are additional to BMD and bone geometry and microstructure as determinants of forearm fracture risk prediction [1]. Boutroy et al. found that the proportion of the load carried by trabecular bone versus cortical bone is associated with wrist fracture independently of BMD and microarchitecture [2]. These clinical studies demonstrate that HR-pQCT based μFE analyses can provide measurements of mechanical properties that independently associate with fracture risk. However, microstructure of one skeletal site may be different from that of another site. It is unclear whether and to what extent these peripheral measurements reflect the bone strength of the proximal femur and vertebral bodies, the sites of frequent osteoporotic fractures. Currently, central quantitative computed tomography (cQCT) is the most commonly used clinical imaging modality to quantify the structural and mechanical properties of the proximal femur and lumbar spine. We therefore evaluated relationships between the stiffness of the distal radius and tibia estimated by HR-pQCT-based FEA with that of the proximal femur and lumbar spine which was estimated from cQCT-based FEA in the same human subjects.


2015 ◽  
Vol 31 (2) ◽  
pp. 259-267 ◽  
Author(s):  
Linwei Lü ◽  
Guangwei Meng ◽  
He Gong ◽  
Dong Zhu ◽  
Jiazi Gao ◽  
...  

Author(s):  
Samuel A. Hockett ◽  
John T. Sherrill ◽  
Micah Self ◽  
Simon C. Mears ◽  
C. Lowry Barnes ◽  
...  

Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Sign in / Sign up

Export Citation Format

Share Document