A spectral method for the numerical solutions of a kinetic equation describing the dispersion of small particles in a turbulent flow

1992 ◽  
Vol 101 (1) ◽  
pp. 228
Author(s):  
Tao Tang ◽  
S McKee ◽  
M.W Reeks
2014 ◽  
Vol 44 (2) ◽  
pp. 742-763 ◽  
Author(s):  
Yevgenii Rastigejev ◽  
Sergey A. Suslov

Abstract In-depth understanding and accurate modeling of the interaction between ocean spray and a turbulent flow under high wind conditions is essential for improving the intensity forecasts of hurricanes and severe storms. Here, the authors consider the E–ε closure for a turbulent flow model that accounts for the effects of the variation of turbulent energy and turbulent mixing length caused by spray stratification. The obtained analytical and numerical solutions show significant differences between the current E–ε model and the lower-order turbulent kinetic energy (TKE) model considered previously. It is shown that the reduction of turbulent energy and mixing length above the wave crest level, where the spray droplets are generated, that is not accounted for by the TKE model results in a significant suppression of turbulent mixing in this near-wave layer. In turn, suppression of turbulence causes an acceleration of flow and a reduction of the drag coefficient that is qualitatively consistent with field observations if spray is fine (even if its concentration is low) or if droplets are large but their concentration is sufficiently high. In the latter case, spray inertia may become important. This effect is subsequently examined. It is shown that spray inertia leads to the reduction of wind velocity in the close proximity of the wave surface relative to the reference logarithmic profile. However, at higher altitudes the suppression of flow turbulence by the spray still results in the wind acceleration and the reduction of the local drag coefficient.


Author(s):  
Vladimir Kolobov ◽  
Juan Alonso Guzmán ◽  
R R Arslanbekov

Abstract A self-consistent hybrid model of standing and moving striations was developed for low-current DC discharges in noble gases. We introduced the concept of surface diffusion in phase space (r,u) (where u denotes the electron kinetic energy) described by a tensor diffusion in the nonlocal Fokker-Planck kinetic equation for electrons in the collisional plasma. Electrons diffuse along surfaces of constant total energy ε=u-eφ(r) between energy jumps in inelastic collisions with atoms. Numerical solutions of the 1d1u kinetic equation for electrons were obtained by two methods and coupled to ion transport and Poisson solver. We studied the dynamics of striation formation in Townsend and glow discharges in Argon gas at low discharge currents using a two-level excitation-ionization model and a “full-chemistry” model, which includes stepwise and Penning ionization. Standing striations appeared in Townsend and glow discharges at low currents, and moving striations were obtained for the discharge currents exceeding a critical value. These waves originate at the anode and propagate towards the cathode. We have seen two types of moving striations with the 2-level and full-chemistry models, which resemble the s and p striations previously observed in the experiments. Simulations indicate that processes in the anode region could control moving striations in the positive column plasma. The developed model helps clarify the nature of standing and moving striations in DC discharges of noble gases at low discharge currents and low gas pressures.


1989 ◽  
Vol 111 (3) ◽  
pp. 333-340 ◽  
Author(s):  
J. F. Louis ◽  
A. Salhi

The turbulent flow between two rotating co-axial disks is driven by frictional forces. The prediction of the velocity field can be expected to be very sensitive to the turbulence model used to describe the viscosity close to the walls. Numerical solutions of the Navier–Stokes equations, using a k–ε turbulence model derived from Lam and Bremhorst, are presented and compared with experimental results obtained in two different configurations: a rotating cavity and the outflow between a rotating and stationary disk. The comparison shows good overall agreement with the experimental data and substantial improvements over the results of other analyses using the k–ε models. Based on this validation, the model is applied to the flow between counterrotating disks and it gives the dependence of the radial variation of the tangential wall shear stress on Rossby number.


Author(s):  
Z. Wu ◽  
J. B. Young

This paper deals with particle deposition onto solid walls from turbulent flows. The aim of the study is to model particle deposition in industrial flows, such as the one in gas turbines. The numerical study has been carried out with a two fluid approach. The possible contribution to the deposition from Brownian diffusion, turbulent diffusion and shear-induced lift force are considered in the study. Three types of turbulent two-phase flows have been studied: turbulent channel flow, turbulent flow in a bent duct and turbulent flow in a turbine blade cascade. In the turbulent channel flow case, the numerical results from a two-dimensional code show good agreement with numerical and experimental results from other resources. Deposition problem in a bent duct flow is introduced to study the effect of curvature. Finally, the deposition of small particles on a cascade of turbine blades is simulated. The results show that the current two fluid models are capable of predicting particle deposition rates in complex industrial flows.


Author(s):  
Ahmad Fakheri

Teaching of turbulence in undergraduate and early graduate level fluid mechanics and heat transfer courses is a difficult undertaking. The approach taken in typical texts requires the students to accept a number of basic concepts without much quantitative justifications. This paper presents an alternative approach, one in which most of the salient features of the turbulent flow are derived by using numerical solutions and experimental results, as opposed to simply having them presented. In this approach, Prandtl’s mixing length model is used to obtain the velocity distribution for fully developed pipe flow. By comparing the numerical calculations with the experimental results, students determine the value of κ that best fits the experimental data on their own. In addition, deficiency of the mixing length in the transition region is shown. It is also shown that other models like Van Driest’s do a better job. The Logarithmic Law of the wall as well as 7th power law are also proven. The different models are used to determine the friction factor for pipe flow and the results are compared with the values obtained from the Moody diagram.


2019 ◽  
Vol 24 (11) ◽  
pp. 3410-3417 ◽  
Author(s):  
Manki Cho

In this work, we present a theoretical basis for the Steklov series expansion methods to reduce and estimate the error of numerical solutions for heat conduction. The meshless spectral method is applied to represent the temperature over the two-dimensional field using the harmonic Steklov eigenfunctions. Error estimates for Steklov approximations are given. With explicit formulae for the Steklov eigenfunctions and eigenvalues, results about the accuracy of the methods for several variables of interest according to the number of eigenfunctions used are described.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 259
Author(s):  
Jose Eladio Flores-Mena ◽  
Pablo García-Sánchez ◽  
Antonio Ramos

We study theoretically and numerically the electrokinetic behavior of metal microparticles immersed in aqueous electrolytes. We consider small particles subjected to non-homogeneous ac electric fields and we describe their motion as arising from the combination of electrical forces (dielectrophoresis) and the electroosmotic flows on the particle surface (induced-charge electrophoresis). The net particle motion is known as dipolophoresis. We also study the particle motion induced by travelling electric fields. We find analytical expressions for the dielectrophoresis and induced-charge electrophoresis of metal spheres and we compare them with numerical solutions. This validates our numerical method, which we also use to study the dipolophoresis of metal cylinders.


Sign in / Sign up

Export Citation Format

Share Document