Growth kinetics of crystals with low melting entropy-new experimental data and comparison with theory

1981 ◽  
Vol 52 ◽  
pp. 76-81 ◽  
Author(s):  
G.A. Alfintsev
2021 ◽  
Vol 316 ◽  
pp. 821-826
Author(s):  
Alexey B. Bulkov ◽  
Vladimir V. Peshkov ◽  
Vladimir F. Selivanov

The influence of the parameters of the vacuum annealing mode on the thickness of the embrittled layers, formed on the surface of titanium as a result of its interaction with the residual gases of the vacuumed space, is studied. The thickness and structure of the layers were determined on samples made of VT6 alloy obtained from sheet metal with a thickness of 3 mm. Annealing of samples in the temperature range of 500-750 °C was performed with air dilution from 10 to 3∙10-2 PA. The dimensions of the embrittled layers were determined by measuring the zone of brittle crack propagation in the fracture of the samples, and measuring the distance between the surface cracks in the embrittled layers, formed during bending deformation. To quantify the effect of vacuum annealing modes of sheet titanium alloy VT6 on the depth of the embrittled part of the formed oxide layer, it is proposed to use a parabolic relationship, characterized by the degree of growth and the constant of the embrittled layer. By processing experimental data, the effect of annealing time, temperature, and air dilution on the growth kinetics of the embrittled layers was established. Based on the obtained kinetic regularities of the growth of the embrittled layers, nomograms are constructed, to determine the size of the embrittled layer formed at the heating stage at different speeds up to the specified annealing temperature.


Author(s):  
Barnali Mandal

ABSTRACTObjectives: The aim of the study was to determine the growth kinetics of Pediococcus acidilactici using a mathematical model for large scale pediocinproduction.Methods: Growth kinetics of P. acidilactici has been studied for pediocin production in small scale batch fermenter (Erlenmeyer flask) using meatprocessing waste medium. The experiments have been conducted with varying the concentrations of glucose, protein, and lactic acid. A mathematicalmodel has been developed to describe growth rate, products (pediocin and lactic acid) formation rate, and substrates (glucose and protein) utilizationrate. Monod model for dual substrates (glucose and protein) has been used with considering lactic acid inhibition. Luedeking-Piret model has beenintroduced to describe the production of pediocin and lactic acid.Results: The values of kinetic parameters have been determined using experimental data and model equations. The model prediction has beencompared satisfactorily with the experimental data for the validation of the model.Conclusions: The developed model was satisfactorily validated to scale up the production of pediocin.Keywords: Pediococcus acidilactici, Pediocin, Meat processing waste, Monod model, Luedeking-Piret model, Kinetic parameters.


2010 ◽  
Vol 297-301 ◽  
pp. 269-274 ◽  
Author(s):  
Mourad Keddam

A simulation of the growth kinetics of iron boride forming on AISI 1018 carbon steel was done on the basis of a kinetic model. This model including the effect of the incubation time during the formation of iron boride, was applied in order to evaluate the kinetic constant at the ( ) interface, the layer thickness and the mass gain depending on the paste-boriding parameters such as time, temperature and boron potential reflected by the corresponding value of the surface boron content. The simulation results were found to be in a good agreement with the experimental data derived from the literature.


2008 ◽  
Vol 138 ◽  
pp. 181-188 ◽  
Author(s):  
Vasil I. Dybkov ◽  
L.V. Goncharuk ◽  
V.G. Khoruzha ◽  
K.A. Meleshevich ◽  
A.V. Samelyuk ◽  
...  

Two boride layers were found to form at the interface of iiron-chromiium alllloys (10 and 25% Cr) or an industrial 13% Cr steel and boron at 850-950 oC and reaction times in the range 1-12 h. In the case of a Fe-10% Cr alloy and the steel, the layers are based on the FeB and Fe2B compounds. With a Fe-25% Cr alloy, the constituent phases are FeB and CrB for the outer layer and Fe2B and Cr2B for the inner layer. Both layers are characterized by a pronounced texture. Diffusional growth kinetics of boride layers are close to parabolic and can alternatively be described by a system of two non-linear differential equations, producing a good fit to the experimental data. The temperature dependence of the layer growth-rate constants obeys a relation of the Arrhenius type.


2007 ◽  
Vol 263 ◽  
pp. 183-188 ◽  
Author(s):  
Vasil I. Dybkov

Two borides FeB and Fe2B were found to form as separate layers at the interface between a 13% Cr steel and boron at 850-950 oC and reaction times up to 12 h. The chromium distribution within the boride layers is rather irregular. Its average content is 8 at. % in the FeB layer and 9 at. % in the Fe2B layer. Both layers are characterized by a pronounced texture. The strongest reflections are {002} and {020} for the orthorhombic FeB phase and {002} for the tetragonal Fe2B phase. Diffusional growth kinetics of boride layers are close to parabolic and can alternatively be described by a system of two non-linear differential equations, producing a good fit to the experimental data.


Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


2018 ◽  
Vol 106 (6) ◽  
pp. 603 ◽  
Author(s):  
Bendaoud Mebarek ◽  
Mourad Keddam

In this paper, we develop a boronizing process simulation model based on fuzzy neural network (FNN) approach for estimating the thickness of the FeB and Fe2B layers. The model represents a synthesis of two artificial intelligence techniques; the fuzzy logic and the neural network. Characteristics of the fuzzy neural network approach for the modelling of boronizing process are presented in this study. In order to validate the results of our calculation model, we have used the learning base of experimental data of the powder-pack boronizing of Fe-15Cr alloy in the temperature range from 800 to 1050 °C and for a treatment time ranging from 0.5 to 12 h. The obtained results show that it is possible to estimate the influence of different process parameters. Comparing the results obtained by the artificial neural network to experimental data, the average error generated from the fuzzy neural network was 3% for the FeB layer and 3.5% for the Fe2B layer. The results obtained from the fuzzy neural network approach are in agreement with the experimental data. Finally, the utilization of fuzzy neural network approach is well adapted for the boronizing kinetics of Fe-15Cr alloy.


1998 ◽  
Vol 536 ◽  
Author(s):  
E. M. Wong ◽  
J. E. Bonevich ◽  
P. C. Searson

AbstractColloidal chemistry techniques were used to synthesize ZnO particles in the nanometer size regime. The particle aging kinetics were determined by monitoring the optical band edge absorption and using the effective mass model to approximate the particle size as a function of time. We show that the growth kinetics of the ZnO particles follow the Lifshitz, Slyozov, Wagner theory for Ostwald ripening. In this model, the higher curvature and hence chemical potential of smaller particles provides a driving force for dissolution. The larger particles continue to grow by diffusion limited transport of species dissolved in solution. Thin films were fabricated by constant current electrophoretic deposition (EPD) of the ZnO quantum particles from these colloidal suspensions. All the films exhibited a blue shift relative to the characteristic green emission associated with bulk ZnO. The optical characteristics of the particles in the colloidal suspensions were found to translate to the films.


2020 ◽  
Vol 86 (12) ◽  
pp. 46-53
Author(s):  
M. M. Gadenin

The goal of the study is determination of the regularities of changes in cyclic strains and related deformation diagrams attributed to the existence of time dwells in the loading modes and imposition of additional variable stresses on them. Analysis of the obtained experimental data on the kinetics of cyclic elastoplastic deformation diagrams and their parameters revealed that in contrast to regular cyclic loading (equal in stresses), additional deformations of static and dynamic creep are developed. The results of the studys are especially relevant for assessing the cyclic strength of unique extremely loaded objects of technology, including nuclear power equipment, units of aviation and space systems, etc. The experiments were carried out on the samples of austenitic stainless steel under low-cycle loading and high temperatures of testing. Static and dynamic creep deformations arising under those loading conditions promote an increase in the range of cyclic plastic strain in each loading cycle and also stimulate an increase in the range of elastoplastic strain due to active cyclic deformation. At the same time the existence of dwells on extrema of stresses in cycles without imposition of additional variable stresses on them most strongly affects the growth of plastic strain ranges in cycles. Imposition of additional variable stresses on dwells also results in the development of creep strains, but their growth turns out to be somewhat less than in the presence of dwells without stresses imposed. The diagrams of cyclic deformation obtained in the experiments are approximated by power dependences, their kinetics being described in terms of the number of loading cycles using corresponding temperature-time functions. At the same time, it is shown that increase in the cyclic plastic deformation for cycles with dwells and imposition of additional variable stresses on them decreases low cycle fatigue life compared to regular loading without dwells at the same stress amplitudes, moreover, the higher the values of static and dynamic creep, the greater decrease in low-cycle fatigue life. This conclusion results from experimental data and analysis of conditions of damage accumulation for the considered forms of the loading cycle using the deformation criterion of reaching the limit state leading to fracture.


2016 ◽  
Vol 58 (5) ◽  
pp. 418-421
Author(s):  
Fatma Ünal ◽  
Ahmet Topuz

Sign in / Sign up

Export Citation Format

Share Document