In vitro proliferation and the cytotoxic specificity of a cryopreserved cytotoxic T cell clone reacting against human autologous tumor cells

1992 ◽  
Vol 154 (2) ◽  
pp. 235-243 ◽  
Author(s):  
Yoshimasa Wada ◽  
Hideyuki Ikeda ◽  
Daisuke Ueda ◽  
Masahiko Ohta ◽  
Shuji Takahashi ◽  
...  
1991 ◽  
Vol 174 (3) ◽  
pp. 499-505 ◽  
Author(s):  
L E Smith ◽  
M Rodrigues ◽  
D G Russell

Leishmania is resident within the macrophages of its vertebrate host. In any intramacrophage infection, where the pathogen is present in a form capable of mediating cell to cell transmission, the contribution of a cytotoxic T cell response to protective immunity is questionable. This study presents data from an in vitro model designed to elucidate the outcome of an interaction between CD8+, cytotoxic T cells and infected macrophages. Experiments were conducted with an H-2d-restricted, cytotoxic CD8+ T cell clone and Leishmania parasites present in mixed macrophage cultures, with the parasites confined to either histocompatible BALB/c macrophages, or incompatible CBA macrophages. Initial experiments indicated that the viability of Leishmania was unaffected by the lysis of its host macrophage by cytotoxic T cells. However, extended experiments showed that the parasites were killed between 24 and 72 h. The same results were obtained regardless of whether the parasites were resident in the target, BALB/c, macrophages or the bystander, CBA, macrophages. Addition of neutralizing, anti-IFN-g antibody to the cultures ablated most of the leishmanicidal behavior, indicating that parasite death was attributable to macrophage activation, resulting from cytokine secretion from the T cells following the initial recognition event.


1984 ◽  
Vol 159 (1) ◽  
pp. 305-312 ◽  
Author(s):  
S J Waters ◽  
S D Waksal ◽  
G P Norton ◽  
C A Bona

A T cell clone isolated from antigen-primed CB6/F1 mice was shown to proliferate to keyhole limpet hemocyanin (KLH) in the presence of irradiated syngeneic F1 spleen cells, as well as spleen cells from either parental strain (BALB/c and C57BL/6). The genetic restriction involved in this antigen-specific proliferation was mapped using BXD (C57BL/6 X DBA/2) recombinant inbred strains of mice to the Mls gene on chromosome one. To exclude the role of Ia antigens as the restricting determinants, monoclonal anti-Ia antibodies were used to block the in vitro proliferative response of this clone. Although anti-Iab and anti-Iad blocked the proliferation of this clone to KLH in the presence of irradiated spleen cells from either parent, this effect was shown to be dependent on Ia molecules passively absorbed by the T cell clone from the irradiated filler cells. Since the T clone expressed Thy-1.2 and Lyt-1+ differentiation markers, its helper activity was compared with other KLH carrier-specific clones in an in vitro antibody synthesis assay. The Mls-KLH-restricted T cell clone, in contrast to other carrier-specific, major histocompatibility complex (MHC)-restricted T cell clones, was unable to cooperate with trinitrophenyl (TNP)-primed B cells in the presence of TNP-KLH to generate an anti-TNP response. These experiments suggest that non-MHC determinants, such as autologous Mls gene products, may play a role in genetically restricted antigen recognition by T lymphocytes.


2020 ◽  
Vol 11 ◽  
Author(s):  
Marie-Line Puiffe ◽  
Aurélie Dupont ◽  
Nouhoum Sako ◽  
Jérôme Gatineau ◽  
José L. Cohen ◽  
...  

IL4I1 is an immunoregulatory enzyme that inhibits CD8 T-cell proliferation in vitro and in the tumoral context. Here, we dissected the effect of IL4I1 on CD8 T-cell priming by studying the differentiation of a transgenic CD8 T-cell clone and the endogenous repertoire in a mouse model of acute lymphocytic choriomeningitis virus (LCMV) infection. Unexpectedly, we show that IL4I1 accelerates the expansion of functional effector CD8 T cells during the first several days after infection and increases the average affinity of the elicited repertoire, supporting more efficient LCMV clearance in WT mice than IL4I1-deficient mice. Conversely, IL4I1 restrains the differentiation of CD8 T-cells into long-lived memory precursors and favors the memory response to the most immunodominant peptides. IL4I1 expression does not affect the phenotype or antigen-presenting functions of dendritic cells (DCs), but directly reduces the stability of T-DC immune synapses in vitro, thus dampening T-cell activation. Overall, our results support a model in which IL4I1 increases the threshold of T-cell activation, indirectly promoting the priming of high-affinity clones while limiting memory T-cell differentiation.


Blood ◽  
2005 ◽  
Vol 106 (8) ◽  
pp. 2769-2780 ◽  
Author(s):  
Marcin W. Wlodarski ◽  
Christine O'Keefe ◽  
Evan C. Howe ◽  
Antonio M. Risitano ◽  
Alexander Rodriguez ◽  
...  

AbstractT-cell large granular lymphocyte (T-LGL) leukemia is a clonal lymphoproliferation of cytotoxic T cells (CTLs) associated with cytopenias. T-LGL proliferation seems to be triggered/sustained by antigenic drive; it is likely that hematopoietic progenitors are the targets in this process. The antigen-specific portion of the T-cell receptor (TCR), the variable beta (VB)–chain complementarity-determining region 3 (CDR3), can serve as a molecular signature (clonotype) of a T-cell clone. We hypothesized that clonal CTL proliferation develops not randomly but in the context of an autoimmune response. We identified the clonotypic sequence of T-LGL clones in 60 patients, including 56 with known T-LGL and 4 with unspecified neutropenia. Our method also allowed for the measurement of clonal frequencies; a decrease in or loss of the pathogenic clonotype and restoration of the TCR repertoire was found after hematologic remission. We identified 2 patients with identical immunodominant CDR3 sequence. Moreover, we found similarity between multiple immunodominant clonotypes and codominant as well as a nonexpanded, “supporting” clonotypes. The data suggest a nonrandom clonal selection in T-LGL, possibly driven by a common antigen. In contrast, the physiologic clonal CTL repertoire is highly diverse and we were not able to detect any significant clonal sharing in 26 healthy controls.


1983 ◽  
Vol 157 (2) ◽  
pp. 705-719 ◽  
Author(s):  
S C Meuer ◽  
K A Fitzgerald ◽  
R E Hussey ◽  
J C Hodgdon ◽  
S F Schlossman ◽  
...  

Monoclonal antibodies were produced against a human cytotoxic T cell clone, CT8III (specificity: HLA-A3), with the view of defining clonally restricted (clonotypic) surface molecules involved in its antigen recognition function. Two individual antibodies, termed anti-Ti1A and anti-Ti1B, reacted exclusively with the CT8III clone when tested on a panel of 80 additional clones from the same donor, resting or activated T cells, B cells, macrophages, thymocytes, or other hematopoietic cells. More importantly, the two antibodies inhibited cell-mediated killing and antigen-specific proliferation of the CT8III clone but did not affect the functions of any other clone tested. This inhibition was not secondary to generalized abrogation of the CT8III clone's function, because interleukin 2 responsiveness was enhanced. To examine the relationship of the structures defined by anti-clonotypic antibodies with known T cell surface molecules, antibody-induced modulation studies and competitive binding assays were performed. The results indicated that the clonotypic structures were associated with, but distinct from, the 20,000-mol wt T3 molecule expressed on all mature T lymphocytes. Moreover, in contrast to anti-T3, anti-Ti1A and anti-Ti1B each immunoprecipitated two molecules of 49,000 and 43,000-mol wt from 131I-labeled CT8III cells under reducing conditions. The development of monoclonal antibodies to such polymorphic T cell surface structures should provide important probes to further define the surface receptor for antigen.


Immunology ◽  
2001 ◽  
Vol 102 (1) ◽  
pp. 8-14 ◽  
Author(s):  
T. Preckel ◽  
S Hellwig ◽  
U Pflugfelder ◽  
M. B. Lappin ◽  
H. U. Weltzien

Virology ◽  
1987 ◽  
Vol 160 (1) ◽  
pp. 278-280 ◽  
Author(s):  
Judy M. Bastin ◽  
Alain R.M. Townsend ◽  
Andrew J. McMichael

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1482-1482
Author(s):  
Seung-Tae Lee ◽  
Yun Fang Jiang ◽  
Soung-Chul Cha ◽  
Hong Qin ◽  
Larry W. Kwak ◽  
...  

Abstract Advanced stage follicular lymphoma remains an incurable disease with a median survival of 8 to 10 years that has not significantly changed over the last four decades. Therefore, novel treatment options are necessary to improve the clinical outcome in these patients. The observation of spontaneous regressions in a small percentage of patients suggested that augmenting the host immune response could potentially control this malignancy. Strategies using active specific immunotherapy with idiotype vaccines led to induction of clinical and molecular responses in a few patients but have met with only limited success possibly due to the low frequency of antigen-specific T cells induced in the patients. In contrast to active immunization, T cells of a given specificity and function may be selected and expanded in vitro to the desired number for adoptive cell transfer. Towards this goal, we stimulated tumor infiltrating lymphocytes (TILs) or peripheral blood mononuclear cells (PBMCs) from five follicular lymphoma patients with CD40 ligand-activated autologous tumor cells at approximately ten-day intervals in the presence of IL-2 and IL-15. After four rounds of stimulations, T cell lines generated from 3/5 patients recognized autologous unmodified tumor cells by producing significant amounts of TNF-α, GM-CSF and/or IFN-γ. By phenotypic analysis, the T cell lines were predominantly CD4+ T cells (> 70%), and intracellular cytokine assay showed that up to 40% of the CD4+ T cells were tumor-reactive. The inhibition of cytokine production by anti-HLA class II but not class I blocking antibodies confirmed that the CD4+ T cells were tumor-reactive. Further characterization revealed that the T cells from one patient recognized autologous tumor but not autologous normal B cells suggesting that they were tumor-specific. While in a second patient CD4+ T cell clones generated from the T cell line by limiting dilution recognized autologous tumor and autologous normal B cells but not autologous monocytes suggesting that they were B cell lineage-specific. We conclude that follicular lymphoma-specific T cells exist and can be efficiently expanded in vitro from both TILs and PBMCs using CD40 ligand-activated autologous tumor cells for adoptive T cell therapy. Additionally, identification of antigens recognized by these T cells could lead to development of novel immunotherapeutic strategies for lymphomas.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3526-3526
Author(s):  
David W. Scott ◽  
Elizabeth Kadavil ◽  
Ai-Hong Zhang ◽  
Ruth A. Ettinger ◽  
Kathleen Pratt

Abstract A major obstacle in the treatment of Hemophilia A is that patients can develop an inhibitory immune response to therapeutic doses of coagulation factor VIII (fVIII). Over the last decade, we have developed a B-cell delivered gene therapy approach to prevent the development of inhibitory antibodies (“inhibitors”) in fVIII knockout mice (see Lei and Scott, Blood105: 4865, 2005). In our murine platform, activated primary spleen B cells or bone marrow cells are transduced with a retroviral vector encoding the fVIII A2 and/or C2 domain fused to an IgG heavy chain, and these cells are injected systemically into immunocompetent fVIII knockout animals. The recipients are rendered specifically tolerant to the encoded C2 and A2 domains, as evidenced by a >90% reduction of inhibitor titers, even in primed animals. To help evaluate the potential of this approach for translation, we are developing in vitro models for tolerance induction using human T-cell clones isolated from subjects with mild hemophilia A. The clones are isolated by single-cell sorting of CD4+ cells that are labeled by fluorescent HLA-DR tetramers complexed with peptides containing fVIII epitopes, followed by expansion with HLA-DR mismatched peripheral blood mononuclear cells (PBMC), phytohaemagglutinin, and interleukin-2. Our initial model utilizes a T-cell clone from an individual with mild hemophilia A due to fVIII missense genotype A2201P, which recognizes an HLA-DRA-DRB1*0101-restricted epitope within a synthetic peptide corresponding to fVIII residues 2194–2213. All of the antigen-specific T-cell clones isolated from this subject secreted interferon-gamma (IFN-γ) when stimulated by fVIII2194–2213 presented by irradiated HLA-DR-matched PBMCs or with plate-bound anti-CD3. Because of their robust response to a clinically relevant epitope in fVIII, one of these clones that expanded well in culture was chosen for initial testing of a modified gene therapy platform similar to that developed using the murine hemophilia A model. HLA-matched peripheral blood B cells were activated with antibodies to IgM or with CD40L-expressing fibroblasts and then transduced with a modified retroviral vector containing the human C2 domain sequence in-frame with the IgG sequence. These B cells were cultured with the hemophilic T-cell clone. After pre-treatment (“tolerance-induction step”), the cells were washed and then stimulated by plate-bound anti-CD3. The subsequent IFN-γ response (measured by ELIspots and ELISA) was dramatically reduced compared to the response of same T-cell clone cultured with mock-transduced B cells. The post-treatment reduction in IFN-γ secretion was equivalent to that induced after soluble anti-CD3 pre-treatment, a known method to induce T-cell anergy in vitro. Interestingly, IL-10 was produced during the tolerance induction (pre-treatment) phase, most likely from the activated B cells. Preliminary, parallel experiments with B cells transduced with a “gutless” adenovirus vector expressing C2-Ig did not result in a similar down-regulation of the T-cell response, suggesting that this non-integrating method of expressing antigens for tolerance is not effective, at least in this system. These results are the first to demonstrate in vitro modulation of cytokine responses using DR-restricted, fVIII-specific T cells from a hemophilia A subject. Further investigations using T-cell clones from hemophilic subjects with and without anti-fVIII antibodies will allow us to explore mechanisms of tolerance and may also suggest novel approaches to reduce inhibitor titers.


Sign in / Sign up

Export Citation Format

Share Document