Completely non-polar solvation as a probe of mechanical relaxation in glass-forming liquids

1994 ◽  
Vol 172-174 ◽  
pp. 234-240 ◽  
Author(s):  
John T. Fourkas ◽  
Andrea Benigno ◽  
Mark Berg
1997 ◽  
Vol 7 (11) ◽  
pp. 1635-1650 ◽  
Author(s):  
A. Faivre ◽  
L. David ◽  
J. Perez

1998 ◽  
Vol 543 ◽  
Author(s):  
H. Wendt ◽  
R. Richert

AbstractWe have measured the time resolved phosphorescence of different probe molecules in glassforming solvents under the condition of geometrical confinement in porous glasses. This solvation dynamics technique probes the local dielectric relaxation in the case of a dipolar chromophore in polar liquids. In the absence of dipolar interactions, the observed Stokes shifts reflect the local density or mechanical responses. Therefore, both orientational and translational modes of molecular motions can be measured for liquids imbibed in porous silica glasses. The effect of confinement on the relaxations of supercooled liquids is strongly dependent on the surface chemistry and can be rationalized on the basis of the cooperativity concept. As in the bulk case, we find that the relaxations in nano-confined liquids display heterogeneous dynamics. The density relaxation turns out to be more sensitive to the thermal history relative to the orientational features of molecular motion. By selectively positioning the chromophores at the liquid/solid interface, we observe also that the structural relaxation of the liquid in the immediate vicinity of the glass surface is slowed down but not entirely blocked.


2002 ◽  
Vol 754 ◽  
Author(s):  
M. Cutroni ◽  
A. Mandanici

ABSTRACTGlass forming liquids exhibit their strong or fragile behaviour as a function of temperature, featuring a smaller or greater deviation from a simple Arrhenius law. The size of such deviation on a typical time scale of 10-6 s characterizes the ‘kinetic fragility’ F1/2 of a given material. Ultrasonic experiments in the MHz region are then suitable to show how the relaxational properties are influenced by the ‘fragile’ character of the liquid investigated. On this basis, measurements of acoustic attenuation at fixed frequency (15 MHz) have been performed on glass forming liquid ethylbenzene in the temperature range 100 K-300 K and compared with previous results on simple supercooled liquids derived from benzene. To prevent crystallization each temperature point below 190 K was reached by cooling the sample directly from 300 K and using also different cooling rates. Measurements have given evidence of a mechanical relaxation process: below the melting temperature the acoustic attenuation exhibits a peak and correspondingly the sound velocity increases from liquid-like to solid-like values. A stretched response function is required to reproduce the observed behaviour. The values of the Kohlrausch-Williams-Watts stretching parameter βkww which describe the experimental data are very low, if compared to those obtained for other glass-forming liquids.


Author(s):  
Gareth Thomas

Silicon nitride and silicon nitride based-ceramics are now well known for their potential as hightemperature structural materials, e.g. in engines. However, as is the case for many ceramics, in order to produce a dense product, sintering additives are utilized which allow liquid-phase sintering to occur; but upon cooling from the sintering temperature residual intergranular phases are formed which can be deleterious to high-temperature strength and oxidation resistance, especially if these phases are nonviscous glasses. Many oxide sintering additives have been utilized in processing attempts world-wide to produce dense creep resistant components using Si3N4 but the problem of controlling intergranular phases requires an understanding of the glass forming and subsequent glass-crystalline transformations that can occur at the grain boundaries.


Author(s):  
Matthew R. Libera ◽  
Martin Chen

Phase-change erasable optical storage is based on the ability to switch a micron-sized region of a thin film between the crystalline and amorphous states using a diffraction-limited laser as a heat source. A bit of information can be represented as an amorphous spot on a crystalline background, and the two states can be optically identified by their different reflectivities. In a typical multilayer thin-film structure the active (storage) layer is sandwiched between one or more dielectric layers. The dielectric layers provide physical containment and act as a heat sink. A viable phase-change medium must be able to quench to the glassy phase after melting, and this requires proper tailoring of the thermal properties of the multilayer film. The present research studies one particular multilayer structure and shows the effect of an additional aluminum layer on the glass-forming ability.


2002 ◽  
Vol 82 (12) ◽  
pp. 2483-2497 ◽  
Author(s):  
T. K. Croat ◽  
A. K. Gangopadhyay ◽  
K. F. K Elton
Keyword(s):  

1981 ◽  
Vol 42 (C5) ◽  
pp. C5-787-C5-792 ◽  
Author(s):  
M. Koiwa ◽  
S. Ishioka ◽  
G. Cannelli ◽  
R. Cantelli

Sign in / Sign up

Export Citation Format

Share Document