Interrelation between luteal cell types in steroidogenesis in vitro of human corpus luteum

1983 ◽  
Vol 19 (1) ◽  
pp. 811-815 ◽  
Author(s):  
Mori Takahide ◽  
Nihnobu Kenji ◽  
Takeuchi Satoru ◽  
Onho Yoshio ◽  
Tojo Shimpei
1983 ◽  
pp. 811-815
Author(s):  
TAKAHIDE MORI ◽  
KENJI NIHNOBU ◽  
SATORU TAKEUCHI ◽  
YOSHIO ONHO ◽  
SHIMPEI TOJO

1994 ◽  
Vol 72 (11-12) ◽  
pp. 531-536 ◽  
Author(s):  
Nicholas Kenny ◽  
Rachel E. Williams ◽  
Lorraine B. Kelm

At the end of a nonconception estrous cycle, the sheep corpus luteum undergoes involution (luteolysis), a process thought to involve apoptotic deletion of cells. It is not yet clear which of the heterogeneous luteal cell types is involved or what mechanisms drive the apoptotic progression. We examined intact paraffin-embedded corpora lutea (in situ terminal dUTP nick end-labeling method) and found direct evidence for apoptotic deletion of cells during luteolysis, but not in healthy, nonregressing corpora lutea. We then sought to implement in vitro models to dissect apoptotic mechanisms in the constituent cells of the corpus luteum. Cells prepared using standard collagenase dispersion of corpus luteum were evaluated for evidence of apoptosis (DNA laddering) by direct agarose gel electrophoresis, a method that obviates the need for DNA extraction, so allowing examination of relatively few cells (≤ 0.5 × 106). When cells were prepared from nonregressing corpus luteum for in vitro manipulation, a population(s) of cells undergoing spontaneous apoptosis was detected. Apoptosis was inhibited by Zn2+ (5 mM), by the tyrosine phosphatase inhibitor sodium orthovanadate (100 μM), or by maintenance at 4 °C. It appears that simple collagenase digestion of intact corpus luteum removes a subset of constituent cells from their survival signal, leading to rapid initiation of endonuclease activity and apoptotic cell death. Identification of the required survival factors and their actions is being pursued to facilitate development of appropriate in vitro models for this endocrine system.Key words: corpus luteum, apoptosis.


1979 ◽  
Vol 83 (3) ◽  
pp. 303-NP ◽  
Author(s):  
JOCELYNE URSELY ◽  
PIERRE LEYMARIE

Luteal cell suspensions obtained by enzymatic digestion of pregnant cow corpus luteum were found to be heterogenous and mainly made up of two types of cells of different sizes. The large cells (37 μm, average diameter) could be separated from the small ones (18 μm, average diameter) by sedimentation at unit gravity in a gradient of Ficoll–bovine serum albumin. A comparative in-vitro study of the synthesis of progesterone by the two types of cells indicated striking differences between them. The average content and the synthesis of progesterone in the absence and presence of a saturating dose of bovine LH after incubation for 2 h were 0·07, 0·12 and 6·9 pg/cell for the small cells and 0·65, 2 and 10 pg/cell for the large ones. Moreover, the sensitivity to low concentrations of LH was 100 to 1000 times higher for the small cells than for the large ones. oestradiol-17β at concentrations ranging from 5 × 10−10 to 5 × 10−4 mol/l exerted a dose–dependent inhibition on the stimulation of LH in both cell types. These results suggest a possible involvement of both cell types in the synthesis of progesterone in vivo with a greater contribution by the small cells to stimulation induced by LH. Moreover, it appears that small cell suspensions could be a useful model system for in-vitro studies of the control of the synthesis of progesterone in cow corpus luteum.


1977 ◽  
Vol 72 (3) ◽  
pp. 351-359 ◽  
Author(s):  
MEREDITH LEMON ◽  
M. LOIR

SUMMARY Corpora lutea from sows at 30, 60 and 90 days of gestation were dissociated enzymically, and the components of the resulting cell suspension were separated by sedimentation at unit gravity. Two luteal cell populations of 30–50 μm diameter and 15–20 μm diameter were obtained and superfused for up to 18 h with Dulbecco's modified Eagle medium, the cells being supported in a column in a matrix of Biogel. Fractions were collected every 30 min and assayed for progesterone and oestradiol-17β. At 30 and 60 days of gestation the large luteal cells produced progesterone at an initial rate of approximately 100 ng/h/105 cells, which decreased to half this rate at 90 days. The smaller cells also released progesterone into the medium at approximately 15–20 ng/h/105 cells at all stages of gestation. At 30 days of gestation, neither cell type released significant amounts of oestradiol-17β, but from 60 days onwards, significant and increasing quantities were measured in the superfusates from the larger cells. Both cell types were perfused with porcine LH at the three stages of gestation, and both showed an immediate response in terms of progesterone release which decreased in magnitude with increasing age of gestation. The response of the smaller cells was greater than that of the larger cells.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zonghao Tang ◽  
Jiajie Chen ◽  
Zhenghong Zhang ◽  
Jingjing Bi ◽  
Renfeng Xu ◽  
...  

The increase of oxidative stress is one of the important characteristics of mammalian luteal regression. Previous investigations have revealed the essential role of reactive oxygen species (ROS) in luteal cell death during luteolysis, while it is unknown how ROS is regulated in this process. Considering the decrease of blood flow and increase of PGF2α during luteolysis, we hypothesized that the HIF-1α pathway may be involved in the regulation of ROS in the luteal cell of the late corpus luteum (CL). Here, by using a pseudopregnant rat model, we showed that the level of both HIF-1α and its downstream BNIP3 was increased during luteal regression. Consistently, we observed the increase of autophagy level during luteolysis, which is regulated in a Beclin1-independent manner. Comparing with early (Day 7 of pseudopregnancy) and middle CL (Day 14), the level of ROS was significantly increased in late CL, indicating the contribution of oxidative stress in luteolysis. Inhibition of HIF-1α by echinomycin (Ech), a potent HIF-1α inhibitor, ameliorated the upregulation of BNIP3 and NIX, as well as the induction of autophagy and the accumulation of ROS in luteal cells on Day 21 of pseudopregnancy. Morphologically, Ech treatment delayed the atrophy of the luteal structure at the late-luteal stage. An in vitro study indicated that inhibition of HIF-1α can also attenuate PGF2α-induced ROS and luteal cell apoptosis. Furthermore, the decrease of cell apoptosis can also be observed by ROS inhibition under PGF2α treatment. Taken together, our results indicated that HIF-1α signaling is involved in the regression of CL by modulating ROS production via orchestrating autophagy. Inhibition of HIF-1α could obviously hamper the apoptosis of luteal cells and the process of luteal regression.


1987 ◽  
Vol 40 (3) ◽  
pp. 331 ◽  
Author(s):  
William Hansel ◽  
Hector W Alila ◽  
Joseph P Dowd ◽  
Xiangzhong Yang

Evidence was cited to show that: (1) prostacyclin (PGI2) plays a luteotrophic role in the bovine corpus luteum and that products of the lipoxygenase pathway of arachidonic acid metabolism, especially 5-hydroxyeicosatetraenoic acid play luteolytic roles; (2) oxytocin of luteal cell origin plays a role in development, and possibly in regression, of the bovine corpus luteum; and (3) luteal cells arise from two sources; the characteristic small luteal cells at all stages of the o~strous cycle and pregnancy are of theca cell origin; the large cells are of granulosa cell origin early in the cycle, but a population of theca-derived large cells appears later in the cycle. Results of in vitro studies with total dispersed cells and essentially pure preparations of large and small luteal cells indicate that : (1) the recently described Ca2+ -polyphosphoinositol-protein kinase C second messenger system is involved in progesterone synthesis in the bovine corpus luteum; (2) activation of protein kinase C is stimulatory to progesterone synthesis in the small luteal cells; (3) activation of protein kinase C has no effect on progesterone synthesis in the large luteal cells; and (4) protein kinase C exerts its luteotrophic effect in total cell preparations, in part at least, by stimulating the production of prostacyclin. The protein kinase C system may cause down regulation of LH receptors in the large cells.


1977 ◽  
Vol 84 (1) ◽  
pp. 142-154 ◽  
Author(s):  
F. E. Cole ◽  
P. C. Arquembourg ◽  
B. F. Rice

ABSTRACT Studies were performed to try to determine if gonadotrophins are altered during their interaction with tissue receptors. Immunologic, electrophoretic and binding properties of lactoperoxidase labelled [125I]HLH and [125I]HCG were examined before and after elution from mouse luteoma and human corpora lutea receptor preparations. The anti-HCG used in these studies at a 1:10 000 dilution precipitated 92% of a freshly iodinated [125I]HCG preparation. Receptor eluted [125I]HCG, derived from the same batch of labelled ligand, was virtually quantitatively precipitated by the same dilution of anti-HCG. [125I]HCG eluted from the human corpus luteum was electrophoretically more homogenous when compared to its heterogenous parent labelled preparation and migrated to a position similar to that of native HCG. In Ouchterlony double diffusion experiments against anti-HCG antiserum, corpus luteum eluted [125I]HCG and [125I]HLH showed immunologic identity with each other as well as with native HCG and HLH. Receptor eluted [125I]HCG from the mouse luteoma, following in vivo administration via tail vein injection or after incubation in vitro with labelled hormones, was immunologically indistinguishable from native HCG. The electrophoretic mobility of HCG was retarded when HCG was added to extracts of mouse luteoma, liver and kidney. Eluates of mouse luteoma, applied to Bio-Gel columns previously equilibrated with [125I]HCG showed the ability to concentrate [125I]HCG in the high molecular weight column fractions. Similar results were obtained with columns equilibrated with [125I]TSH and [125I]HGH. [125I]HCG eluted from the mouse luteoma was able to bind to fresh luteoma homogenate but, in contrast to an earlier report with [125I]HCG eluted from rat testis, no enhancement of binding of the eluted [125I]HCG was observed with fresh tissue. These results could be explained by the extraction of non-dialyzable intracellular component during the [125I]HCG elution procedure from the luteoma homogenate which combines with HCG to lower its binding and alter its electrophoretic mobility. This component could be extracted from other mouse tissues and combines with other labelled peptide hormones. Data in the present report support in part the hypothesis that gonadotrophins eluted from mouse luteoma and human corpus luteum are not altered by their interaction with tissue receptors.


1994 ◽  
Vol 142 (1) ◽  
pp. 101-110 ◽  
Author(s):  
G S Menzies ◽  
T A Bramley

Abstract Subcellular fractionation of porcine corpus luteum (CL) homogenates on continuous sucrose gradients has previously demonstrated that most of the endogenous progesterone of the CL was associated with a unique particulate fraction. Exogenous radiolabelled steroids were also sequestered with some specificity by this fraction. We now report that this particulate fraction is capable of binding high levels of exogenous 3H-labelled progesterone (and pregnenolone) in vitro, but only in the presence of the saponin, digitonin. Binding was dependent on the pH, temperature and duration of incubation, and showed specificity and high affinity for progesterone (Kd, 79 nm). Androgens, oestrogens and pregnenolone competed for porcine luteal [3H] progesterone binding sites, but only at much higher concentrations, whereas cholesterol, a number of progesterone receptor agonist and antagonist analogues and inhibitors of 3β-hydroxysteroid dehydrogenase and C17-hydroxylase/C17,20-lyase did not compete. Analysis of profiles for a number of luteal cell-surface membrane and intracellular organelle markers confirmed previous studies showing the association of an NADH-cytochrome C reductase with this fraction. Moreover, the content of endogenous progesterone associated with particulate subcellular fractions isolated from porcine granulosa cell (GC) and CL homogenates at different stages of the luteal phase and early pregnancy waxed and waned with the stage of the luteal phase (and the secretory activity of the CL). Binding of [3H]progesterone in vitro equilibrated at the same buoyant density as endogenous progesterone: levels of both were highest during the mid-luteal phase and during early pregnancy, lower in early and late luteal CL, and undetectable in corpora albicantia. In contrast, relaxin secretory granules were readily resolved from progesterone binding sites. We propose that these particulate progesterone binding sites may be involved in the sequestration and/or packaging of newly-synthesized steroid for secretion by the luteal cell, or may mediate actions of progesterone within the luteal cell. Journal of Endocrinology (1994) 142, 101–110


Sign in / Sign up

Export Citation Format

Share Document