Foot force distribution of walking machine with consideration of terrain properties

1992 ◽  
Vol 29 (4-5) ◽  
pp. 497-514 ◽  
Author(s):  
Chun Qi Zheng ◽  
Shin-Min Song ◽  
G.E.O. Widera
Author(s):  
Xiaochun Gao ◽  
Shin-Min Song

Abstract Unlike in wheeled vehicles, compliance in walking machine systems changes due to the variation of leg geometry, as its body proceeds. This variation in compliance will cause vibration, even if external loads remain constant. A theory is thus developed to predict the body vibrations of a walking machine during walking. On the other hand, dynamic foot forces under body vibrations can be computed by application of the existing numerical methods. As an example, the body vibrations of a quadrupedal walking chair under different walking conditions are simulated in terms of the developed theory. The results show that the influence of body vibrations on the foot force distribution is essential and, in some cases, the walking chair may lose its stability due to its body vibrations, even though it is identified to be stable in a quasi-static analysis. The developed theory can also be extended to other similar multi-limbed robotic systems, such as multi-fingered robot hands.


1993 ◽  
Vol 115 (4) ◽  
pp. 856-862
Author(s):  
Xiaochun Gao ◽  
Shin-Min Song

Unlike wheeled vehicles, compliance in walking machine systems changes due to the variation of leg geometry, as its body proceeds. This variation in compliance will cause vibration, even if external loads remain constant. A theory is thus developed to predict the body vibrations of a walking machine during walking. On the other hand, dynamic foot forces under body vibrations can be computed by application of the existing numerical methods. As an example, the body vibrations of a quadrupedal walking chair under different walking conditions are simulated in terms of the developed theory. The results show that the influence of body vibrations on the foot force distribution is essential and, in some cases, the walking chair may lose its stability due to its body vibrations, even though it is identified to be stable in a quasistatic analysis. The developed theory can also be extended to other similar multilimbed robotic systems, such as multifingered robot hands.


2019 ◽  
Vol 16 (4) ◽  
pp. 621-632 ◽  
Author(s):  
Teng Chen ◽  
Xiaobo Sun ◽  
Ze Xu ◽  
Yibin Li ◽  
Xuewen Rong ◽  
...  

2020 ◽  
Vol 10 (2) ◽  
pp. 540
Author(s):  
Sebastian Klich ◽  
Biye Wang ◽  
Aiguo Chen ◽  
Jun Yan ◽  
Adam Kawczyński

The purpose of the present study was to investigate the changes in plantar foot force distribution (i.e., the percentage of force and force distribution under the rearfoot and forefoot) and plantar pressure pain sensitivity maps in professional futsal players after long-term low-dye taping (LDT). The subjects (n = 25) were male futsal players (age 23.03 ± 1.15 years). During the experiment, a nonelastic tape was applied on the plantar foot surface according to the standards of LDP. The experimental protocol consisted of a 3-day cycle during which the plantar foot force distribution (FFD) and plantar pressure pain threshold (PPT) were measured: (1) before the tape was applied, (2) 24 h after application, and (3) 72 h after application. The results revealed a significant decrease in the force distribution under the rearfoot (p ≤ 0.001) and forefoot (p ≤ 0.001) on the right and left sides. Moreover, the results showed an increase in the plantar pressure pain threshold in all regions of the foot (p ≤ 0.001). The results of this study suggest that plantar fascial taping can be an effective method for normalizing the force distribution on the foot and reducing the plantar pain threshold. The findings provide useful information regarding the prevention of and physical therapy of lower extremity injuries in soccer and futsal.


2011 ◽  
Vol 110-116 ◽  
pp. 2730-2739 ◽  
Author(s):  
Shibendu Shekhar Roy ◽  
Dilip Kumar Pratihar

Crab walking is the most general and very important one for omni-directional walking of a hexapod robot. This paper presents a dynamic model for determining energy consumption and energy efficiency of a hexapod robot during its locomotion over flat terrain with a constant crab angle. The model has been derived for statically stable crab-wave gaits by considering a minimization of dissipating energy for optimal foot force distribution. Two approaches, such as minimization of norm of feet forces and minimization of norm of joint torques have been developed. The variations of average power consumption and energy consumption per weight per traveled length with velocity or stroke have been compared for crab walking with tripod and tetrapod gait patterns. Tetrapod gaits are found to be more energy-efficient compared to the tripod gaits.


Robotica ◽  
2000 ◽  
Vol 18 (4) ◽  
pp. 403-413 ◽  
Author(s):  
Debao Zhou ◽  
K. H. Low ◽  
Teresa Zielinska

One of the important issues of walking machine active force control is a successful distribution of the body force to the feet to prevent leg slippage. In this paper, a new force distribution method, the Friction Constraint Method (FriCoM), is introduced. The force distribution during the walking of a typical quadruped crawl gait is analyzed by using the FriCoM. Computation results show that the distributed forces of the feet are continuous during the walking. This reflects the change of the force distribution during actual conditions. The comparison with a pseudo-inverse method shows that the FriCoM is more practical. The FriCom also requires less computation time than that by an incremental optimization method. Some problems, such as the singularity in the application of the FriCoM, are discussed. The FriCoM will be used in the active force control of a quadruped robot that is taken as a platform for the research on the study of terrain adaptation.


Sign in / Sign up

Export Citation Format

Share Document