Petroleum hydrocarbons in the arctic ocean surface water

1982 ◽  
Vol 13 (6) ◽  
pp. 211-213 ◽  
Author(s):  
Elisabet Fogelqvist ◽  
Sören Lagerkvist ◽  
Peter Lindroth
2020 ◽  
Vol 13 (1) ◽  
pp. 80
Author(s):  
Yulia A. Frank ◽  
Egor D. Vorobiev ◽  
Danil S. Vorobiev ◽  
Andrey A. Trifonov ◽  
Dmitry V. Antsiferov ◽  
...  

To date, the largest Russian rivers discharging to the Arctic Ocean remain a “blank spot” on the world map of data on the distribution of microplastics in freshwater systems. This study characterizes the abundance and morphology of microplastics in surface water of the Ob River and its large tributary, the Tom River, in western Siberia. The average number of particles for the two rivers ranged from 44.2 to 51.2 items per m3 or from 79.4 to 87.5 μg per m3 in the Tom River and in the Ob River, respectively. Of the recovered microplastics, 93.5% were less than 1 mm in their largest dimension, the largest group (45.5% of total counts) consisted of particles with sizes range 0.30–1.00 mm. Generally, microfragments of irregular shape were the most abundant among the Ob and Tom samples (47.4%) and exceeded microfibers (22.1%), microfilms (20.8%), and microspheres (9.74%) by average counts. Results from this study provide a baseline for understanding the scale of the transport of microplastics by the Ob River system into the Arctic Ocean and add to currently available data on microplastics abundance and diversity in freshwater systems of differing global geographic locations.


1988 ◽  
Vol 25 (5) ◽  
pp. 701-709 ◽  
Author(s):  
A. E. Aksu ◽  
G. Vilks

Oxygen and carbon isotopic analyses have been performed on the tests of Planulina wuellerstorfi and three size fractions of sinistral Neogloboquadrina pachyderma recovered from 33 Arctic Ocean surface-sediment samples. Stable isotopic compositions of N. pachyderma are found to be dependent on the test size: larger specimens show considerable enrichment in both δ18O and δ18C. The difference between the isotopic compositions of the 63–125 and 125–250 μm size fractions in N. pachyderma can be explained by biogenic fractionation effects during foraminiferal test growth. Larger (250–500 μm) N. pachyderma displayed accretions of secondary calcite, i.e., the outermost shell contained significant amounts of inorganically precipitated magnesium calcite. Thus, larger foraminifera may not be suited for down-core stable isotopic studies. There is a difference of ~2‰ between δ18O values of surface samples from the eastern and western Arctic Ocean, reflecting large differences between surface-water salinity in these regions. Therefore, oxygen isotopic data may have limited use as a chronostratigraphic tool in down-core studies in the Arctic Ocean, but we can use them to infer past variations in surface-water salinities. Planulina wuellerstorfi also showed depletions of both δ18O and δ18C in its calcite tests relative to calcite precipitated in isotopic equilibrium with ambient sea water; these depletions ranged from −0.8 to −0.9‰ in δ18Oand −1.2 to −0.9‰ in δ18C. This taxon is found to deposit its shell very close to the δ18C of ΣCO2 of bottom waters.


2020 ◽  
Vol 66 (4) ◽  
pp. 404-426
Author(s):  
E. A. Cherniavskaia ◽  
L. A. Timokhov ◽  
V. Y. Karpiy ◽  
S. Y. Malinovskiy

2012 ◽  
Vol 42 (4) ◽  
pp. 659-668 ◽  
Author(s):  
Mary-Louise Timmermans ◽  
Sylvia Cole ◽  
John Toole

Abstract Ice-tethered profiler (ITP) measurements from the Arctic Ocean’s Canada Basin indicate an ocean surface layer beneath sea ice with significant horizontal density structure on scales of hundreds of kilometers to the order 1 km submesoscale. The observed horizontal gradients in density are dynamically important in that they are associated with restratification of the surface ocean when dense water flows under light water. Such restratification is prevalent in wintertime and competes with convective mixing upon buoyancy forcing (e.g., ice growth and brine rejection) and shear-driven mixing when the ice moves relative to the ocean. Frontal structure and estimates of the balanced Richardson number point to the likelihood of dynamical restratification by isopycnal tilt and submesoscale baroclinic instability. Based on the evidence here, it is likely that submesoscale processes play an important role in setting surface-layer properties and lateral density variability in the Arctic Ocean.


Ocean Science ◽  
2017 ◽  
Vol 13 (6) ◽  
pp. 997-1016 ◽  
Author(s):  
Irina I. Pipko ◽  
Svetlana P. Pugach ◽  
Igor P. Semiletov ◽  
Leif G. Anderson ◽  
Natalia E. Shakhova ◽  
...  

Abstract. The Arctic is undergoing dramatic changes which cover the entire range of natural processes, from extreme increases in the temperatures of air, soil, and water, to changes in the cryosphere, the biodiversity of Arctic waters, and land vegetation. Small changes in the largest marine carbon pool, the dissolved inorganic carbon pool, can have a profound impact on the carbon dioxide (CO2) flux between the ocean and the atmosphere, and the feedback of this flux to climate. Knowledge of relevant processes in the Arctic seas improves the evaluation and projection of carbon cycle dynamics under current conditions of rapid climate change. Investigation of the CO2 system in the outer shelf and continental slope waters of the Eurasian Arctic seas (the Barents, Kara, Laptev, and East Siberian seas) during 2006, 2007, and 2009 revealed a general trend in the surface water partial pressure of CO2 (pCO2) distribution, which manifested as an increase in pCO2 values eastward. The existence of this trend was defined by different oceanographic and biogeochemical regimes in the western and eastern parts of the study area; the trend is likely increasing due to a combination of factors determined by contemporary change in the Arctic climate, each change in turn evoking a series of synergistic effects. A high-resolution in situ investigation of the carbonate system parameters of the four Arctic seas was carried out in the warm season of 2007; this year was characterized by the next-to-lowest historic sea-ice extent in the Arctic Ocean, on satellite record, to that date. The study showed the different responses of the seawater carbonate system to the environment changes in the western vs. the eastern Eurasian Arctic seas. The large, open, highly productive water area in the northern Barents Sea enhances atmospheric CO2 uptake. In contrast, the uptake of CO2 was strongly weakened in the outer shelf and slope waters of the East Siberian Arctic seas under the 2007 environmental conditions. The surface seawater appears in equilibrium or slightly supersaturated by CO2 relative to atmosphere because of the increasing influence of river runoff and its input of terrestrial organic matter that mineralizes, in combination with the high surface water temperature during sea-ice-free conditions. This investigation shows the importance of processes that vary on small scales, both in time and space, for estimating the air–sea exchange of CO2. It stresses the need for high-resolution coverage of ocean observations as well as time series. Furthermore, time series must include multi-year studies in the dynamic regions of the Arctic Ocean during these times of environmental change.


Author(s):  
Lisa A. Miller ◽  
Gauthier Carnat ◽  
Brent G. T. Else ◽  
Nes Sutherland ◽  
Timothy N. Papakyriakou

2017 ◽  
Vol 17 (12) ◽  
pp. 7311-7332 ◽  
Author(s):  
Lauren M. Zamora ◽  
Ralph A. Kahn ◽  
Sabine Eckhardt ◽  
Allison McComiskey ◽  
Patricia Sawamura ◽  
...  

Abstract. Aerosol indirect effects have potentially large impacts on the Arctic Ocean surface energy budget, but model estimates of regional-scale aerosol indirect effects are highly uncertain and poorly validated by observations. Here we demonstrate a new way to quantitatively estimate aerosol indirect effects on a regional scale from remote sensing observations. In this study, we focus on nighttime, optically thin, predominantly liquid clouds. The method is based on differences in cloud physical and microphysical characteristics in carefully selected clean, average, and aerosol-impacted conditions. The cloud subset of focus covers just ∼ 5 % of cloudy Arctic Ocean regions, warming the Arctic Ocean surface by ∼ 1–1.4 W m−2 regionally during polar night. However, within this cloud subset, aerosol and cloud conditions can be determined with high confidence using CALIPSO and CloudSat data and model output. This cloud subset is generally susceptible to aerosols, with a polar nighttime estimated maximum regionally integrated indirect cooling effect of ∼ −0.11 W m−2 at the Arctic sea ice surface (∼ 8 % of the clean background cloud effect), excluding cloud fraction changes. Aerosol presence is related to reduced precipitation, cloud thickness, and radar reflectivity, and in some cases, an increased likelihood of cloud presence in the liquid phase. These observations are inconsistent with a glaciation indirect effect and are consistent with either a deactivation effect or less-efficient secondary ice formation related to smaller liquid cloud droplets. However, this cloud subset shows large differences in surface and meteorological forcing in shallow and higher-altitude clouds and between sea ice and open-ocean regions. For example, optically thin, predominantly liquid clouds are much more likely to overlay another cloud over the open ocean, which may reduce aerosol indirect effects on the surface. Also, shallow clouds over open ocean do not appear to respond to aerosols as strongly as clouds over stratified sea ice environments, indicating a larger influence of meteorological forcing over aerosol microphysics in these types of clouds over the rapidly changing Arctic Ocean.


Sign in / Sign up

Export Citation Format

Share Document