High-efficiency transient phase conjugation by turning on reading beam incident upon steady-state transmission grating in BaTiO3 crystal

1996 ◽  
Vol 123 (4-6) ◽  
pp. 603-606 ◽  
Author(s):  
Y. Takayama ◽  
A. Okamoto ◽  
K. Sato
2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Cao Taiqiang ◽  
Chen Zhangyong ◽  
Wang Jun ◽  
Sun Zhang ◽  
Luo Qian ◽  
...  

In order to implement a high-efficiency bridgeless power factor correction converter, a new topology and operation principles of continuous conduction mode (CCM) and DC steady-state character of the converter are analyzed, which show that the converter not only has bipolar-gain characteristic but also has the same characteristic as the traditional Boost converter, while the voltage transfer ratio is not related with the resonant branch parameters and switching frequency. Based on the above topology, a novel bridgeless Bipolar-Gain Pseudo-Boost PFC converter is proposed. With this converter, the diode rectifier bridge of traditional AC-DC converter is eliminated, and zero-current switching of fast recovery diode is achieved. Thus, the efficiency is improved. Next, we also propose the one-cycle control policy of this converter. Finally, experiments are provided to verify the accuracy and feasibility of the proposed converter.


A non-steady-state theory of stimulated light scattering, which places particular emphasis on the effects induced in the scattering medium, is developed. It is shown that a spatial modulation of the dielectric constant is induced whose amplitude and phase can be expressed in terms of simple convolution integrals. These involve only the input pulse shape, the steady-state scattering spectrum and the frequency shift between the laser and scattered beams. The effect of the induced modulation on the scattered beam and on any weak independent beam incident at the Bragg angle is also considered.


Author(s):  
Harold Sun ◽  
Dave Hanna ◽  
Liangjun Hu ◽  
Eric Curtis ◽  
James Yi ◽  
...  

Heavy EGR required on diesel engines for future emission regulation compliance has posed a big challenge to conventional turbocharger technology for high efficiency and wide operation range. This study, as part of the U.S. Department of Energy sponsored research program, is focused on advanced turbocharger technologies that can improve turbocharger efficiency on customer driving cycles while extending the operation range significantly, compared to a production turbocharger. The production turbocharger for a medium-duty truck application was selected as a donor turbo. Design optimizations were focused on the compressor impeller and turbine wheel. On the compressor side, advanced impeller design with arbitrary surface can improve the efficiency and surge margin at low end while extending the flow capacity, while a so-called active casing treatment can provide additional operation range extension without compromising compressor efficiency. On the turbine side, mixed flow turbine technology was revisited with renewed interest due to its performance characteristics, i.e. high efficiency at low-speed ratio, relative to the base conventional radial flow turbine, which is relevant to heavy EGR operation for future diesel applications. The engine dynamometer test shows that the advanced turbocharger technology enables over 3% BSFC improvement at part-load as well as full-load condition, in addition to an increase in rated power. The performance improvement demonstrated on engine dynamometer seems to be more than what would typically be translated from the turbocharger flow bench data, indicating that mixed flow turbine may provide additional performance benefits under pulsed exhaust flow on an internal combustion engine and in the low-speed ratio areas that are typically not covered by steady state flow bench tests.


1959 ◽  
Vol 37 (4) ◽  
pp. 737-743 ◽  
Author(s):  
Ludovic Ouellet ◽  
James A. Stewart

A theoretical treatment is worked out for the kinetic scheme[Formula: see text]in which the concentration of P1 is followed. The steady-state and transient phase equations are obtained subject to the condition that the substrate concentration is greatly in excess of the enzyme concentration. The conditions under which evidence in favor of this mechanism can be obtained from experimental data are discussed. Under certain conditions, the weight of the enzyme corresponding to one active site can be determined. Methods for the evaluation of the different constants are described.


1973 ◽  
Vol 51 (6) ◽  
pp. 806-814 ◽  
Author(s):  
Nasrat H. Hijazi ◽  
Keith J. Laidler

A non-steady-state analysis has been worked out for two mechanisms in which an activator Q can become attached to an enzyme–substrate complex EA, the species EAQ breaking down more rapidly than EA. It is shown that if EAQ breaks down into EQ + product there can be no steady state. If, however, EAQ breaks down into E + Q + product, the transient phase is followed by a steady state in which the product versus time curve is linear. A special case of this mechanism is when Q is the substrate (substrate activation). Some published kinetic data on carboxypeptidase are analyzed with reference to the equations derived.


Sign in / Sign up

Export Citation Format

Share Document