Transient-Phase and Steady-State Kinetics for Enzyme Activation

1973 ◽  
Vol 51 (6) ◽  
pp. 806-814 ◽  
Author(s):  
Nasrat H. Hijazi ◽  
Keith J. Laidler

A non-steady-state analysis has been worked out for two mechanisms in which an activator Q can become attached to an enzyme–substrate complex EA, the species EAQ breaking down more rapidly than EA. It is shown that if EAQ breaks down into EQ + product there can be no steady state. If, however, EAQ breaks down into E + Q + product, the transient phase is followed by a steady state in which the product versus time curve is linear. A special case of this mechanism is when Q is the substrate (substrate activation). Some published kinetic data on carboxypeptidase are analyzed with reference to the equations derived.


1975 ◽  
Author(s):  
D. F. Smith ◽  
D. P. Kosow ◽  
G. A. Jamieson

Elucidation of the enzymatic mechanism of collagen: glucosyltransferase is essential to an understanding of its role in platelet function. A soluble form of the enzyme has been purified 100-fold and a sensitive new assay system developed. Studies with effectors such as UDP, ADP and ristocetin under steady state conditions have shown that only two of the possible sequential mechanisms are consistent with the kinetic data. Inhibition by UDP and ADP is competitive with UDPG but non-competitive with galactosylhydroxylysine. They would not, therefore, be expected to inhibit the formation of an enzyme-substrate complex with collagen. Under physiological conditions, their presence would be expected to increase the affinity of the cell surface enzyme for its acceptor on collagen in the case of the ordered mechanism, or not to affect it in the case of the random mechanism. These data are consistent with the potentiation of collagen-induced aggregation by ADP, and the lack of effect of UDP on the adherence of platelets to collagen.(Supported, in part, by USPHS.)



1971 ◽  
Vol 123 (3) ◽  
pp. 445-453 ◽  
Author(s):  
P. Ottolenghi

Laidler (1955) showed that consideration of the effect of pH on enzymic mechanisms that obey steady-state kinetics leads to the inclusion in the equations of a ‘perturbation term’ that can introduce curvature into the Lineweaver–Burk plots. He also stated conditions in which this term vanishes. This term can lead to apparent activation by substrate. Further, several cases are shown in which simplification, but not disappearance, of the perturbation term can lead to linearity of Lineweaver–Burk plots. These cases arise when the ionization of groups at the active site either is unaffected or is completely prevented when the enzyme–substrate complex is formed. It is also shown that V(app.) can vary with pH without a concomitant change in Km(app.) in certain cases that obey steady-state kinetics without implying that Km=Ks. When the perturbation term is significant, Dixon's (1953) rules for the calculation of pK values will not always apply.



1985 ◽  
Vol 231 (1) ◽  
pp. 83-88 ◽  
Author(s):  
R Bicknell ◽  
S G Waley

The kinetics of the hydrolysis of two cephalosporins by β-lactamase I from Bacillus cereus 569/H/9 has been studied by single-turnover and steady-state methods. Single-turnover kinetics could be measured over the time scale of minutes when cephalosporin C was the substrate. The other substrate, 7-(2′,4′-dinitrophenylamino)deacetoxycephalosporanic acid, was hydrolysed even more slowly, and has potential for use in crystallographic studies of β-lactamases. Comparison of single-turnover and steady-state kinetics showed that, for both substrates, opening the β-lactam ring (i.e. acylation of the enzyme) was the rate-determining step. Thus the non-covalent enzyme-substrate complex is expected to be the intermediate observed crystallographically.



1970 ◽  
Vol 48 (12) ◽  
pp. 1793-1802 ◽  
Author(s):  
H. P. Kasserra ◽  
K. J. Laidler

The stopped-flow technique has been used to study the pre-steady-state kinetics of the hydrolysis of N-carbobenzoxy-L-alanine-p-nitrophenyl ester catalyzed by trypsin. By working under conditions such that the enzyme concentration is much greater than that of the substrate, it has been possible to measure [Formula: see text] the rate constant for the conversion of the enzyme-substrate complex into the acyl enzyme. The pH dependence of [Formula: see text] reveals a pKb′ value of 6.9 for the conversion of complex into acyl enzyme, in agreement with deductions from steady-state investigations. The pH dependence of [Formula: see text] (equal to k−1 + k2)/k1) has also been determined. The results provide direct evidence for the existence of an enzyme-substrate complex for this reaction.The work has been done in various mixtures of water and isopropyl alcohol. The logarithms of the rate constants [Formula: see text] and [Formula: see text] vary linearly with 1/D, showing a decrease with increasing alcohol concentration; [Formula: see text] increases with alcohol concentration. The solvent results suggest that addition of alcohol affects the hydrophobic bonding in the protein and leads to unfolding of the enzyme.



1959 ◽  
Vol 37 (4) ◽  
pp. 737-743 ◽  
Author(s):  
Ludovic Ouellet ◽  
James A. Stewart

A theoretical treatment is worked out for the kinetic scheme[Formula: see text]in which the concentration of P1 is followed. The steady-state and transient phase equations are obtained subject to the condition that the substrate concentration is greatly in excess of the enzyme concentration. The conditions under which evidence in favor of this mechanism can be obtained from experimental data are discussed. Under certain conditions, the weight of the enzyme corresponding to one active site can be determined. Methods for the evaluation of the different constants are described.





1967 ◽  
Vol 45 (5) ◽  
pp. 539-546 ◽  
Author(s):  
Harvey Kaplan ◽  
Keith J. Laidler

General steady-state equations are worked out for enzyme reactions which occur according to the scheme [Formula: see text]Equations showing the pH dependence of the kinetic parameters are developed in a form which distinguishes between essential and nonessential ionizing groups. The pK dependence of [Formula: see text], the second-order constant extrapolated to zero substrate constant, gives pK values for groups which ionize on the free enzyme, but reveals such a pK only if the corresponding group is also involved in the breakdown of the Michaelis complex. General steady-state equations are also developed for the case in which an inhibitor can combine with the free enzyme, the enzyme–substrate complex, and also a second intermediate (e.g. an acyl enzyme). The equations are given in a form that is convenient for analyzing the experimental results, and a number of special cases are considered. It is shown how the type of inhibition depends not only on the nature of the inhibitor but also on that of the substrate, an important factor being the rate-determining step of the reaction. Examples of the various kinds of behavior are given.



2005 ◽  
Vol 52 (4) ◽  
pp. 765-780 ◽  
Author(s):  
Ramón Varón ◽  
Bent H Havsteen ◽  
Edelmira Valero ◽  
Milagros Molina-Alarcón ◽  
Francisco García-Cánovas ◽  
...  

This paper presents a kinetic analysis of the whole reaction course, i.e. of both the transient phase and the steady state, of open multicyclic enzyme cascade systems. Equations for fractional modifications are obtained which are valid for the whole reaction course. The steady state expressions for the fractional modifications were derived from the latter equations since they are not restricted to the condition of rapid equilibrium. Finally, the validity of our results is discussed and tested by numerical integration. Apart from the intrinsic value of knowing the kinetic behaviour of any of the species involved in any open multicyclic enzyme cascade, the kinetic analysis presented here can be the basis of future contributions concerning open multicyclic enzyme cascades which require the knowledge of their time course equations (e.g. evaluation of the time needed to reach the steady state, suggestion of kinetic data analysis, etc.), analogous to those already carried out for open bicyclic cascades.



1955 ◽  
Vol 33 (10) ◽  
pp. 1614-1624 ◽  
Author(s):  
Keith J. Laidler

The steady-state hypothesis is discussed for enzyme systems, and the conditions under which the steady-state equations will be valid over the main course of the reaction are obtained. It is shown that this is so if the substrate is in great excess, and also under several other circumstances. Equations are derived for the kinetic behavior during the transient phase of the reaction. Two-substrate systems, and the special case of catalase, are considered.



Sign in / Sign up

Export Citation Format

Share Document