Properties of polymeric films obtained from u.v. cured poly(ethylene glycol) diacrylates

Polymer ◽  
1993 ◽  
Vol 34 (17) ◽  
pp. 3653-3657 ◽  
Author(s):  
A Priola ◽  
G Gozzelino ◽  
F Ferrero ◽  
G Malucelli
Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4953
Author(s):  
Iwona Tarach ◽  
Ewa Olewnik-Kruszkowska ◽  
Agnieszka Richert ◽  
Magdalena Gierszewska ◽  
Anna Rudawska

The aim of the study was to establish the influence of poly(ethylene glycol) (PEG) on the properties of potential biodegradable packaging materials with antibacterial properties, based on polylactide (PLA) and tea tree essential oil (TTO). The obtained polymeric films consisted of PLA, a natural biocide, and tea tree essential oil (5–20 wt. %) was prepared with or without an addition of 5 wt. % PEG. The PLA-based materials have been tested, taking into account their morphology, and their thermal, mechanical and antibacterial properties against Staphylococcus aureus and Escherichia coli. It was established that the introduction of a plasticizer into the PLA–TTO systems leads to an increase in tensile strength, resistance to deformation, as well an increased thermal stability, in comparison to films modified using only TTO. The incorporation of 5 wt. % PEG in the PLA solution containing 5 wt. % TTO allowed us to obtain a material exhibiting a satisfactory antibacterial effect on both groups of representative bacteria. The presented results indicated a beneficial effect of PEG on the antibacterial and functional properties of materials with the addition of TTO.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Anton Bonartsev ◽  
Vera Voinova ◽  
Elizaveta Akoulina ◽  
Andrey Dudun ◽  
Irina Zharkova ◽  
...  

2007 ◽  
Vol 32 (5) ◽  
pp. 431-446 ◽  
Author(s):  
Tahar Bartil ◽  
Mahmoud Bounekhel ◽  
Cedric Calberg ◽  
Robert Jerome

2019 ◽  
Author(s):  
Alex Khang ◽  
Andrea Gonzalez Rodriguez ◽  
Megan E. Schroeder ◽  
Jacob Sansom ◽  
Emma Lejeune ◽  
...  

2019 ◽  
Vol 14 (3) ◽  
pp. 280-291 ◽  
Author(s):  
Jaleh Varshosaz ◽  
Farshid Hassanzadeh ◽  
Batool Hashemi-Beni ◽  
Mohsen Minaiyan ◽  
Saeedeh Enteshari

Background: Due to the low water solubility of Docetaxel (DTX), it is formulated with ethanol and Tween 80 with lots of side effects. For this reason, special attention has been paid to formulate it in new drug nano-carriers. Objective: The goal of this study was to evaluate the safety, antitumor activity and tissue distribution of the novel synthesized Raloxifene (RA) targeted polymeric micelles. Methods: DTX-loaded RA-targeted polymeric micelles composed of poly(styrene-maleic acid)- poly(amide-ether-ester-imide)-poly(ethylene glycol) (SMA-PAEE-PEG) were prepared and their antitumor activity was studied in MC4-L2 tumor-bearing mice compared with non-targeted micelles and free DTX. Safety of the micelles was studied by Hematoxylin and Eosin (H&E) staining of tumors and major organs of the mice. The drug accumulation in the tumor and major organs was measured by HPLC method. Results: The results showed better tumor growth inhibition and increased survival of mice treated with DTX-loaded in targeted micelles compared to the non-targeted micelles and free DTX. Histopathological studies, H&E staining of tumors and immunohistochemical examination showed the potential of DTX-loaded RA-targeted micelles to inhibit tumor cells proliferation. The higher accumulation of the DTX in the tumor tissue after injection of the micelles compared to the free DTX may indicate the higher uptake of the targeted micelles by the G-Protein-Coupled Estrogen Receptors (GPER). Conclusion: The results indicate that RA-conjugated polymeric micelles may be a strong and effective drug delivery system for DTX therapy and uptake of the drug into tumor cells, and overcome the disadvantages and side effects of conventional DTX.


Sign in / Sign up

Export Citation Format

Share Document