Sea-Level Estimates during the Last Deglaciation Based on δ18O and Accelerator Mass Spectrometry 14C Ages Measured in Globigerina bulloides

1989 ◽  
Vol 31 (3) ◽  
pp. 381-391 ◽  
Author(s):  
Edouard Bard ◽  
Richard Fairbanks ◽  
Maurice Arnold ◽  
Pierre Maurice ◽  
Josette Duprat ◽  
...  

AbstractCoupled measurements of δ18O and accelerator mass spectrometry (AMS) 14C in a particular species of planktonic foraminifera may be used to calculate sea-level estimates for the last deglaciation. Of critical importance for this type of study is a knowledge of the seasonality of foraminiferal growth, which can be provided by δ18O measurements of modern shells (core tops, plankton tows). Isotopic (δ18O, AMS-14C dating) and faunal records (transfer function sea surface temperature) were obtained from two cores in the North Atlantic at about 37°N. The locations were chosen to obtain high sedimentation rate records removed from the major ice-melt discharge areas of the last deglaciation. Based upon Globigerina bulloides data, four δ18O-based sea-level estimates were calculated: −67 ± 7 m at 12,200 yr B.P. and −24 ± 8 m at about 8200 yr B.P. for core SU 81-18; −83 ± 10 m at 12,200 yr B.P. and −13 ± 11 m at about 8500 yr B.P. for core SU 81-14. Using a second working hypothesis concerning the seasonability of G. bulloides growth, it is suggested that the sea-level rose by about 40 m during the millennium which followed 14,500 yr B.P.

Nature ◽  
1987 ◽  
Vol 328 (6133) ◽  
pp. 791-794 ◽  
Author(s):  
Edouard Bard ◽  
Maurice Arnold ◽  
Pierre Maurice ◽  
Josette Duprat ◽  
Jean Moyes ◽  
...  

2020 ◽  
Vol 33 (17) ◽  
pp. 7455-7478
Author(s):  
Nanxuan Jiang ◽  
Qing Yan ◽  
Zhiqing Xu ◽  
Jian Shi ◽  
Ran Zhang

AbstractTo advance our knowledge of the response of midlatitude westerlies to various external forcings, we investigate the meridional shift of midlatitude westerlies over arid central Asia (ACA) during the past 21 000 years, which experienced more varied forcings than the present day based on a set of transient simulations. Our results suggest that the evolution of midlatitude westerlies over ACA and driving factors vary with time and across seasons. In spring, the location of midlatitude westerlies over ACA oscillates largely during the last deglaciation, driven by meltwater fluxes and continental ice sheets, and then shows a long-term equatorward shift during the Holocene controlled by orbital insolation. In summer, orbital insolation dominates the meridional shift of midlatitude westerlies, with poleward and equatorward migration during the last deglaciation and the Holocene, respectively. From a thermodynamic perspective, variations in zonal winds are linked with the meridional temperature gradient based on the thermal wind relationship. From a dynamic perspective, variations in midlatitude westerlies are mainly induced by anomalous sea surface temperatures over the Indian Ocean through the Matsuno–Gill response and over the North Atlantic Ocean by the propagation of Rossby waves, or both, but their relative importance varies across forcings. Additionally, the modeled meridional shift of midlatitude westerlies is broadly consistent with geological evidence, although model–data discrepancies still exist. Overall, our study provides a possible scenario for a meridional shift of midlatitude westerlies over ACA in response to various external forcings during the past 21 000 years and highlights important roles of both the Indian Ocean and the North Atlantic Ocean in regulating Asian westerlies, which may shed light on the behavior of westerlies in the future.


Nature ◽  
1986 ◽  
Vol 320 (6060) ◽  
pp. 350-352 ◽  
Author(s):  
Jean-Claude Duplessy ◽  
Maurice Arnold ◽  
Pierre Maurice ◽  
Edouard Bard ◽  
Josette Duprat ◽  
...  

1969 ◽  
Vol 28 ◽  
pp. 21-24 ◽  
Author(s):  
Carina Bendixen ◽  
Jørn Bo Jensen ◽  
Ole Bennike ◽  
Lars Ole Boldreel

The Kattegat region is located in the wrench zone between the Fennoscandian shield and the Danish Basin that has repeatedly been tectonically active. The latest ice advances during the Quaternary in the southern part of Kattegat were from the north-east, east and south-east (Larsen et al. 2009). The last deglaciation took place at c. 18 to 17 ka BP (Lagerlund & Houmark-Nielsen 1993; Houmark-Nielsen et al. 2012) and was followed by inundation of the sea that formed a palaeo-Kattegat (Conradsen 1995) with a sea level that was relatively high because of glacio-isostatic depression. Around 17 ka BP, the ice margin retreated to the Øresund region and meltwater from the retreating ice drained into Kattegat. Over the next millennia, the region was characterised by regression because the isostatic rebound of the crust surpassed the ongoing eustatic sea-level rise, and a regional lowstand followed at the late glacial to Holocene transition (Mörner 1969; Thiede 1987; Lagerlund & Houmark-Nielsen 1993; Jensen et al. 2002a, b).


2019 ◽  
Vol 15 (4) ◽  
pp. 1621-1646
Author(s):  
Heather J. Andres ◽  
Lev Tarasov

Abstract. Abrupt climate shifts of large amplitudes were common features of the Earth's climate as it transitioned into and out of the last full glacial state approximately 20 000 years ago, but their causes are not yet established. Midlatitude atmospheric dynamics may have played an important role in these climate variations through their effects on heat and precipitation distributions, sea ice extent, and wind-driven ocean circulation patterns. This study characterizes deglacial winter wind changes over the North Atlantic (NAtl) in a suite of transient deglacial simulations using the PlaSim Earth system model (run at T42 resolution) and the TraCE-21ka (T31) simulation. Though driven with yearly updates in surface elevation, we detect multiple instances of NAtl jet transitions in the PlaSim simulations that occur within 10 simulation years and a sensitivity of the jet to background climate conditions. Thus, we suggest that changes to the NAtl jet may play an important role in abrupt glacial climate changes. We identify two types of simulated wind changes over the last deglaciation. Firstly, the latitude of the NAtl eddy-driven jet shifts northward over the deglaciation in a sequence of distinct steps. Secondly, the variability in the NAtl jet gradually shifts from a Last Glacial Maximum (LGM) state with a strongly preferred jet latitude and a restricted latitudinal range to one with no single preferred latitude and a range that is at least 11∘ broader. These changes can significantly affect ocean circulation. Changes to the position of the NAtl jet alter the location of the wind forcing driving oceanic surface gyres and the limits of sea ice extent, whereas a shift to a more variable jet reduces the effectiveness of the wind forcing at driving surface ocean transports. The processes controlling these two types of changes differ on the upstream and downstream ends of the NAtl eddy-driven jet. On the upstream side over eastern North America, the elevated ice sheet margin acts as a barrier to the winds in both the PlaSim simulations and the TraCE-21ka experiment. This constrains both the position and the latitudinal variability in the jet at LGM, so the jet shifts in sync with ice sheet margin changes. In contrast, the downstream side over the eastern NAtl is more sensitive to the thermal state of the background climate. Our results suggest that the presence of an elevated ice sheet margin in the south-eastern sector of the North American ice complex strongly constrains the deglacial position of the jet over eastern North America and the western North Atlantic as well as its variability.


Sign in / Sign up

Export Citation Format

Share Document