background climate
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 25)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Teuntje P. Hollaar ◽  
Sarah J. Baker ◽  
Stephen P. Hesselbo ◽  
Jean-François Deconinck ◽  
Luke Mander ◽  
...  

AbstractFire regimes are changing due to both anthropogenic climatic drivers and vegetation management challenges, making it difficult to determine how climate alone might influence wildfire activity. Earth has been subject to natural-background climate variability throughout its past due to variations in Earth’s orbital parameters (Milkankovitch cycles), which provides an opportunity to assess climate-only driven variations in wildfire. Here we present a 350,000 yr long record of fossil charcoal from mid-latitude (~35°N) Jurassic sedimentary rocks. These results are coupled to estimates of variations in the hydrological cycle using clay mineral, palynofacies and elemental analyses, and lithological and biogeochemical signatures. We show that fire activity strongly increased during extreme seasonal contrast (monsoonal climate), which has been linked to maximal precessional forcing (boreal summer in perihelion) (21,000 yr cycles), and we hypothesize that long eccentricity modulation further enhances precession-forced fire activity.


2021 ◽  
Vol 17 (5) ◽  
pp. 1919-1936
Author(s):  
Sam Sherriff-Tadano ◽  
Ayako Abe-Ouchi ◽  
Akira Oka ◽  
Takahito Mitsui ◽  
Fuyuki Saito

Abstract. Glacial periods undergo frequent climate shifts between warm interstadials and cold stadials on a millennial timescale. Recent studies show that the duration of these climate modes varies with the background climate; a colder background climate and lower CO2 generally result in a shorter interstadial and a longer stadial through its impact on the Atlantic Meridional Overturning Circulation (AMOC). However, the duration of stadials is shorter during Marine Isotope Stage 3 (MIS3) than during MIS5, despite the colder climate in MIS3, suggesting potential control from other climate factors on the duration of stadials. In this study, we investigate the role of glacial ice sheets. For this purpose, freshwater hosing experiments are conducted with an atmosphere–ocean general circulation model under MIS5a and MIS3 boundary conditions, as well as MIS3 boundary conditions with MIS5a ice sheets. The impact of ice sheet differences on the duration of the stadials is evaluated by comparing recovery times of the AMOC after the freshwater forcing is stopped. These experiments show a slightly shorter recovery time of the AMOC during MIS3 compared with MIS5a, which is consistent with ice core data. We find that larger glacial ice sheets in MIS3 shorten the recovery time. Sensitivity experiments show that stronger surface winds over the North Atlantic shorten the recovery time by increasing the surface salinity and decreasing the sea ice amount in the deepwater formation region, which sets favorable conditions for oceanic convection. In contrast, we also find that surface cooling by larger ice sheets tends to increase the recovery time of the AMOC by increasing the sea ice thickness over the deepwater formation region. Thus, this study suggests that the larger ice sheet during MIS3 compared with MIS5a could have contributed to the shortening of stadials in MIS3, despite the climate being colder than that of MIS5a, because surface wind plays a larger role.


Author(s):  
A. Koskosidis ◽  
E. Khah ◽  
A. Mavromatis ◽  
M. Irakli ◽  
D.N. Vlachostergios

Background: Climate change is expected to be a major constraint for chickpea as it increases the frequency of drought and temperature extremes. The aim of this study was to investigate the effect of drought and heat stress conditions on chickpeas’ physical, quality and bioactive traits, along with antioxidant activity of five chickpea genotypes in normal and late sowning conditions. Methods: Field trials were carried out at Institute of Industrial and Forage Crops. All the five genotypes were planted at two different sowing dates, one during the normal sowing period (February 28, 2019) and one off-season (April 1, 2019) in order to achieve dry-heat conditions during the chickpea’s critical stages of off-season sowing. Result: Sowing period significantly affected cooking time and bioactive traits, resulted in decreased cooking time and increased bioactive traits values, in the later sowing period. Genotype’s effects were significant for all the traits studied. Amorgos appeared to be a promising variety with high nutritive value as it showed the highest values in terms of bioactive traits and antioxidant activity in both sowing periods, combined with low cooking time and high protein content at the off-season sowing.


Diversity ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 205
Author(s):  
Neus Nualart ◽  
Sonia Herrando-Moraira ◽  
Eduardo Cires ◽  
Moisès Guardiola ◽  
Emilio Laguna ◽  
...  

Petrocoptis montsicciana and P. pardoi are two Iberian endemic taxa of Caryophyllaceae family with an unclear taxonomic delimitation, being variously treated as independent species, subspecies or even synonyms. In the present study, allozyme raw data obtained in the early 2000s have been reused with improved tools to survey genetic structure, and complemented with modeling and niche comparative analyses to shed light on species delimitation. Genetic structure was investigated using four approaches: Bayesian clustering, Monmonier’s algorithm, Principal Coordinate Analysis (PCoA), and Analysis of Molecular Variance (AMOVA). Ecological niche differences have been assessed through Ecological Niche Modeling (ENM) using MaxEnt, and Principal Component Analysis using both occurrence records and background climate (PCA-env). Genetic analysis confirms the distinction between both taxa, and the scenario of a progenitor–derivative (P–D) is suggested. In agreement with genetic data, niche analysis shows clear differences between their climate regarding species occurrences and background spaces. Climate divergence could be explained, at least partially, by the abundance of rocks where species live although differences at the microclimate instead of the regional climate should be explored in future research. Given the genetic distinction between P. montsicciana and P. pardoi, both taxa should be regarded as separate ‘Management Units’ (MUs).


2021 ◽  
Author(s):  
Sam Sherriff-Tadano ◽  
Ayako Abe-Ouchi ◽  
Akira Oka ◽  
Takahito Mitsui ◽  
Fuyuki Saito

Abstract. Glacial periods undergo frequent climate shifts between warm interstadials and cold stadials on a millennial time-scale. Recent studies have shown that the duration of these climate modes varies with the background climate; a colder background climate and lower CO2 generally results in a shorter interstadial and a longer stadial through its impact on the Atlantic Meridional Overturning Circulation (AMOC). However, the duration of stadials was shorter during the Marine Isotope Stage 3 (MIS3) compared with MIS5, despite the colder climate in MIS3, suggesting potential control from other climate factors on the duration of stadials. In this study, we investigated the role of glacial ice sheets. For this purpose, freshwater hosing experiments were conducted with an atmosphere–ocean general circulation model under MIS5a, MIS3 and MIS3 with MIS5a ice sheet conditions. The impact of ice sheet differences on the duration of the stadials was evaluated by comparing recovery times of the AMOC after freshwater forcing was reduced. Hosing experiments showed a slightly shorter recovery time of the AMOC in MIS3 compared with MIS5a, which was consistent with ice core data. We found that larger glacial ice sheets in MIS3 shortened the recovery time. Sensitivity experiments showed that stronger surface winds over the North Atlantic shortened the recovery time by increasing the surface salinity and decreasing the sea ice amount in the deepwater formation region, which set favourable conditions for oceanic convection. In contrast, we also found that surface cooling by larger ice sheets tended to increase the recovery time of the AMOC by increasing the sea ice thickness over the deepwater formation region. Thus, this study suggests that the larger ice sheet in MIS3 compared with MIS5a could have contributed to the shortening of stadials in MIS3, despite the climate being colder than that of MIS5a, when the effect of surface wind played a larger role.


2021 ◽  
Author(s):  
Xiao Zhang

<p>Paleoclimatic records reveal that millennial-scale climate variability during the Pleistocene was most pronounced during intermediate glacial conditions, like Marine Isotope Stage 3 (MIS3), rather than during interglacial and fully glaciated climates, like the Last Glacial Maximum (LGM). The rapid transitions between cold stadials and warm interstadials recorded in Greenland ice cores during MIS3, referred to as DansgaardeOeschger (D-O) events, have been correlated with millennial-scale climate variations worldwide. Although the origin of D-O events is a matter of controversy, striking evidence shows that<br>variations in the strength of the Atlantic meridional overturning circulation (AMOC) were involved.Therefore, understanding the stability properties of the ocean circulation under different background climate conditions is key to understanding D-O millennial-scale climate variability. In the present study,the stability of the AMOC to northern high-latitude freshwater perturbations under MIS3 and LGM boundary conditions is investigated by using the coupled climate model CCSM3. Stability diagrams constructed from a large set of equilibrium experiments reveal a nonlinear dependence of AMOC<br>strength on freshwater forcing under both MIS3 and LGM conditions. The MIS3 baseline state is close to an AMOC stability threshold, which makes the MIS3 climate unstable with respect to minor perturbations. A similar threshold behavior in AMOC stability is observed under LGM conditions; however, larger freshwater perturbations are necessary to pass the threshold and weaken the AMOC. The threshold’s displacement relative to the MIS3 background climate is attributable to differences in the atmospheric hydrologic cycle and North Atlantic sea ice transport. Different atmospheric moisture transports are attributable to thermodynamic and dynamic processes related to differences in greenhouse gas forcing and ice-sheet height between MIS3 and the LGM. We conclude that the higher stability of the AMOCduring the LGM is a physically plausible explanation for millennial-scale D-O-type climate variability being suppressed under full glacial conditions, whereas minor perturbations in freshwater fluxes could<br>have triggered D-O climate shifts during MIS3.</p>


Horticulturae ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 2
Author(s):  
Kerstin Funke ◽  
Michael Blanke

(1) Background: Climate change associated with a warm autumn often hampers the development of colouration of many fruits including late ripening apple varieties in New Zealand. (2) Objective: This study will provide detailed information on the possibility of enhancing colouration of apples under the diffuse light conditions in autumn in the southern hemisphere (SH). The aim is to obtain a larger proportion of fruit meeting the (red) colour market specifications, especially within the first picks, and to identify both the side of the fruit and its position within the tall trees canopy (3.5 m) as affected by reflective mulch on the ground spread at and over different times. (3) Material and methods: Reflective white textile mulch (Extenday®) was spread in the grassed alleyways 4 weeks or 2 weeks before the anticipated harvest in April on cv. Fuji and Pacific Rose apple trees without hail nets in the Northern Part of the South Island (41° S) of NZ. Fruit colour (blush) was determined by scoring and colourimeter during fruit maturation and at harvest, and fruit quality was determined at harvest by standard methods. (4) Results: (a) In cv. Pacific Rose apple, the reflective mulch increased the scored blush value from 1.5 (<50% blush) to 3.9 (ca. 75% blush) before the first pick, whereas the control fruit (without ExtendayR) reached a final score value of only 3.0. (b) Fruit colour improved after one week of exposure to reflective mulch in the SH. (c) The scored blush on fruit near the trunk with reflective mulch doubled (Pacific Rose) or tripled (Fuji) at harvest in comparison with trees with grass alleyways (control). (d) Two and four weeks of reflective mulch enhanced colouration of the down facing side for fruit of both cultivars, especially for fruit from the inside of the canopy near the tree trunk. However, reflective mulch significantly improved blush by 20% on fruit from the periphery of the canopies of the tall trees in both cultivars without significantly affecting fruit firmness, soluble solids, starch breakdown or ripeness. (5) Conclusions: The results from ca. 2000 colour measurements showed that the short exposure of at least two weeks of reflective mulch was sufficient for enhancing colouration for outside, inside and down facing sides of the fruit of both cultivars. As a result of this surprisingly short and efficient exposure time for these tall trees (3.5 m), the reflective mulch increased the portion of fruit harvested in the first pick by 8% (Fuji) and by 27% (Pacific Rose) with improved fruit storability or export quality and thereby increased financial returns to the grower in the SH.


2020 ◽  
Vol 12 (21) ◽  
pp. 3567
Author(s):  
Fang Zhang ◽  
Chenghao Wang ◽  
Zhi-Hua Wang

As one of the most sensitive areas to climate change, drylands cover ~40% of the Earth’s terrestrial land surface and host more than 38% of the global population. Meanwhile, their response to climate change and variability carries large uncertainties as induced by background climate, topography, and land cover composition; but there is a lack of intercomparison of different dryland ecosystems. In this study, we compare the changing climate and corresponding responses of major natural vegetation cover types in Xinjiang and Arizona, two typical drylands with similar landscapes in Asia and North America. Long-term (2002–2019) quasi-8-day datasets of daily precipitation, daily mean temperature, and Normalized Difference Vegetation Index (NDVI) were constructed based on station observations and remote sensing products. We found that much of Xinjiang experienced warming and wetting trends (although not co-located) over the past 18 years. In contrast, Arizona was dominated by warming with insignificant wetting or drying trends. Significant greening trends were observed in most parts of both study areas, while the increasing rate of NDVI anomalies was relatively higher in Xinjiang, jointly contributed by its colder and drier conditions. Significant degradation of vegetation growth (especially for shrubland) was observed over 18.8% of Arizona due to warming. Our results suggest that responses of similar natural vegetation types under changing climate can be diversified, as controlled by temperature and moisture in areas with different aridity.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Gerald T. Rustic ◽  
Pratigya J. Polissar ◽  
Ana Christina Ravelo ◽  
Sarah M. White

Abstract The El Niño Southern Oscillation (ENSO) is highly dependent on coupled atmosphere-ocean interactions and feedbacks, suggesting a tight relationship between ENSO strength and background climate conditions. However, the extent to which background climate state determines ENSO behavior remains in question. Here we present reconstructions of total variability and El Niño amplitude from individual foraminifera distributions at discrete time intervals over the past ~285,000 years across varying atmospheric CO2 levels, global ice volume and sea level, and orbital insolation forcing. Our results show a strong correlation between eastern tropical Pacific Ocean mixed-layer thickness and both El Niño amplitude and central Pacific variability. This ENSO-thermocline relationship implicates upwelling feedbacks as the major factor controlling ENSO strength on millennial time scales. The primacy of the upwelling feedback in shaping ENSO behavior across many different background states suggests accurate quantification and modeling of this feedback is essential for predicting ENSO’s behavior under future climate conditions.


Sign in / Sign up

Export Citation Format

Share Document