Luminescence-based viable cell enumeration of Erwinia carotovora in the soil

1991 ◽  
Vol 23 (11) ◽  
pp. 1021-1024 ◽  
Author(s):  
F.A. Grant ◽  
L.A. Glover ◽  
K. Killham ◽  
J.I. Prosser

Author(s):  
Luciana P. Di Salvo ◽  
Julia E. García ◽  
Mariana L. Puente ◽  
Josefina Amigo ◽  
Analía Anríquez ◽  
...  


2011 ◽  
Vol 87 (3) ◽  
pp. 263-272 ◽  
Author(s):  
Jessica K. van Frankenhuyzen ◽  
Jack T. Trevors ◽  
Hung Lee ◽  
Cecily A. Flemming ◽  
Marc B. Habash


2020 ◽  
Author(s):  
Qianqian Li ◽  
Juanjuan Liu ◽  
Mengli Chen ◽  
Kelong Ma ◽  
Tianming Wang ◽  
...  

Abstract Candida albicans and Candida glabrata are frequently coisolated from the oral cavity in immunosuppressive or immunocompromised individuals. Their relationship is usually defined as competition as C. glabrata can inhibit growth of C. albicans in cohabitation. In this study, eight C. albicans isolates as well as two C. glabrata strains were used to investigate the effects of culture medium (Roswell Park Memorial Institute [RPMI]-1640, YPD, YND), incubation time (24 h, 48 h, 72 h, 96 h), initial inoculum (C. glabrata: C. albicans = 2:1, 1:1, 1:2), and medium state (static and dynamic states) on viable cell enumeration and relative abundance in both Candida SB and MB. The results showed that in most cases, C. glabrata and C. albicans SB and MB flourished in RPMI-1640 at 24 h under dynamic state compared with other conditions. Except YPD medium, there were high proportions of preponderance of C. albicans over C. glabrata in MB compared with SB. High initial inoculum promoted corresponding Candida number in both SB and MB and its abundance in MB relative to SB. This study revealed an impact of several environmental conditions on the formation of C. albicans and C. glabrata SB and MB and their abundance in MB in comparison with SB, deepening our understanding of both Candida interaction and their resistance mechanism in MB. Lay Summary This study described the effects of diverse experimental conditions on the numbers of Candida albicans and Candida glabrata single biofilms and mixed biofilms and their abundance.



Author(s):  
Jun Mitsuhashi
Keyword(s):  


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1861
Author(s):  
Armin Mooranian ◽  
Melissa Jones ◽  
Corina Mihaela Ionescu ◽  
Daniel Walker ◽  
Susbin Raj Wagle ◽  
...  

The utilisation of bioartificial organs is of significant interest to many due to their versatility in treating a wide range of disorders. Microencapsulation has a potentially significant role in such organs. In order to utilise microcapsules, accurate characterisation and analysis is required to assess their properties and suitability. Bioartificial organs or transplantable microdevices must also account for immunogenic considerations, which will be discussed in detail. One of the most characterized cases is the investigation into a bioartificial pancreas, including using microencapsulation of islets or other cells, and will be the focus subject of this review. Overall, this review will discuss the traditional and modern technologies which are necessary for the characterisation of properties for transplantable microdevices or organs, summarizing analysis of the microcapsule itself, cells and finally a working organ. Furthermore, immunogenic considerations of such organs are another important aspect which is addressed within this review. The various techniques, methodologies, advantages, and disadvantages will all be discussed. Hence, the purpose of this review is providing an updated examination of all processes for the analysis of a working, biocompatible artificial organ.



AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Akikazu Sakudo ◽  
Yoshihito Yagyu

AbstractEfficient methods to achieve the safe decontamination of agricultural products are needed. Here, we investigated the decontamination of citrus fruits to test the antifungal potential of a novel non-thermal gas plasma apparatus, termed a roller conveyer plasma instrument. This instrument generates an atmospheric pressure dielectric barrier discharge (APDBP) plasma on a set of rollers. Penicillium venetum was spotted onto the surface of the fruit or pericarps, as well as an aluminium plate to act as a control, before performing the plasma treatment. The results showed that viable cell number of P. venetum decreased with a decimal reduction time (D value or estimated treatment time required to reduce viable cell number by 90%) of 0.967 min on the aluminium plate, 2.90 min and 1.88 min on the pericarps of ‘Kiyomi’ (Citrus unshiu × C. sinensis) and ‘Kawano-natsudaidai’ (C. natsudaidai) respectively, and 2.42 min on the surface of ‘Unshu-mikan’ (C. unshiu). These findings confirmed a fungicidal effect of the plasma not only on an abiotic surface (aluminium plate) but also on a biotic surface (citrus fruit). Further development of the instrument by combining sorting systems with the plasma device promises an efficient means of disinfecting citrus fruits during food processing.



Sign in / Sign up

Export Citation Format

Share Document