Energy gap variations and structural phase changes in CdSTe alloy thin films

1973 ◽  
Vol 18 (1) ◽  
pp. 25-28 ◽  
Author(s):  
R. Hill ◽  
D. Richardson
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Y. Djaoued ◽  
S. Balaji ◽  
R. Brüning

Recent developments in the synthesis of transition metal oxides in the form of porous thin films have opened up opportunities in the construction of electrochromic devices with enhanced properties. In this paper, synthesis, characterization and electrochromic applications of porous WO3thin films with different nanocrystalline phases, such as hexagonal, monoclinic, and orthorhombic, are presented. Asymmetric electrochromic devices have been constructed based on these porous WO3thin films. XRD measurements of the intercalation/deintercalation of Li+into/from the WO3layer of the device as a function of applied coloration/bleaching voltages show systematic changes in the lattice parameters associated with structural phase transitions in LixWO3. Micro-Raman studies show systematic crystalline phase changes in the spectra of WO3layers during Li+ion intercalation and deintercalation, which agree with the XRD data. These devices exhibit interesting optical modulation (up to ~70%) due to intercalation/deintercalation of Li ions into/from the WO3layer of the devices as a function of applied coloration/bleaching voltages. The obtained optical modulation of the electrochromic devices indicates that, they are suitable for applications in electrochromic smart windows.


2021 ◽  
pp. 138917
Author(s):  
P. Devaraj ◽  
R. Meena ◽  
P. Sivakumar ◽  
P. Peranantham ◽  
V.V. Siva Kumar ◽  
...  

2020 ◽  
Vol 233 ◽  
pp. 05008
Author(s):  
Tiago Rebelo ◽  
João Alves ◽  
Bernardo Almeida

The laser annealing of a Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCZT) thin film on a metglas substrate was simulated in order to understand how the annealing parameters (energy and fluence of the laser, pulse duration, etc) influence the optimization of the crystallinity of the film. Using a 1D heat diffusion equation combined with a finite difference method, the variation of the temperature with the depth relative to the film’s surface and on annealing time was studied. The laser intensity, BCZT’s reflectivity and the temperature dependence of the ther¬mal conductivity and specific heat of the BCZT were considered. No structural phase changes were detected in both the BCZT and the metglas for the values of laser fluence studied, but for 80 mJ/cm2 the maximum temperature approached near the BCZT’s melting temperature. It was observed that since the film’s ther¬mal conductivity decreases with increasing fluence, lower fluences allow for a better distribution of the laser’s energy throughout the crystal lattice, increasing the crystallinity. It was further observed that between consecutive pulses the film’s temperature stabilizes at room temperature.


Author(s):  
J.P.S. Hanjra

Tin mono selenide (SnSe) with an energy gap of about 1 eV is a potential material for photovoltaic applications. Various authors have studied the structure, electronic and photoelectronic properties of thin films of SnSe grown by various deposition techniques. However, for practical photovoltaic junctions the electrical properties of SnSe films need improvement. We have carried out investigations into the properties of flash evaporated SnSe films. In this paper we report our results on the structure, which plays a dominant role on the electrical properties of thin films by TEM, SEM, and electron diffraction (ED).Thin films of SnSe were deposited by flash evaporation of SnSe fine powder prepared from high purity Sn and Se, onto glass, mica and KCl substrates in a vacuum of 2Ø micro Torr. A 15% HF + 2Ø% HNO3 solution was used to detach SnSe film from the glass and mica substrates whereas the film deposited on KCl substrate was floated over an ethanol water mixture by dissolution of KCl. The floating films were picked up on the grids for their EM analysis.


Vacuum ◽  
2021 ◽  
Vol 187 ◽  
pp. 110141
Author(s):  
I.O. Shpetnyi ◽  
I.Yu Protsenko ◽  
S.I. Vorobiov ◽  
V.I. Grebinaha ◽  
L. Satrapinskyy ◽  
...  

2021 ◽  
pp. 159346
Author(s):  
Hyun-Woo Bang ◽  
Woosuk Yoo ◽  
Kyujoon Lee ◽  
Young Haeng Lee ◽  
Myung-Hwa Jung

2017 ◽  
Vol 186 ◽  
pp. 198-201 ◽  
Author(s):  
Benlong Guo ◽  
Hongmei Deng ◽  
Xuezhen Zhai ◽  
Wenliang Zhou ◽  
Xiankuan Meng ◽  
...  

1968 ◽  
Vol 167 (3) ◽  
pp. 736-744 ◽  
Author(s):  
Rudolf Ludeke ◽  
William Paul
Keyword(s):  

2021 ◽  
Vol 19 (5) ◽  
pp. 132-138
Author(s):  
Maan Abd-Alameer Salih ◽  
Q.S. Kareem ◽  
Mohammed Hadi Shinen

In this exploration Poly lactic corrosive (PLA) was orchestrated the ring-opening polymerization Poly lactic corrosive (PLA) blended with poly(3-hexylthiophene) (P3HT) which prepared by solution. Blends thin films Synthesis by spin coating technique and using Tetrahydrofuran (THF) as solvent. PLA powder was 'characterized by' 'X-ray' 'diffraction', '(FT-IR)'. pure Optical properties (PLA), (PLA)/P3HT blends thin films with different percentage of P3HT (0, 1, 2, and 3) wt% were investigated using UV-VS spectroscopy The results showed that the absorption, absorption coefficient, extinction coefficient and conductivity increase with increasing the rate of deformation P3HT, The energy gap decreases with increasing deformation.


Sign in / Sign up

Export Citation Format

Share Document