Wear-resistant coatings by laser processing

1979 ◽  
Vol 64 (2) ◽  
pp. 249-256 ◽  
Author(s):  
A. Belmondo ◽  
M. Castagna
2017 ◽  
Vol 16 (3) ◽  
pp. 249-255
Author(s):  
O. G. Devoino ◽  
A. F. Panteleenko

The paper describes investigations on wear-resistant coatings from diffusion-alloyed austenitic steel obtained while using plasma spraying and subsequent laser processing. It is common knowledge that majority of machine parts and equipment has been out of service due to wear of surface layer. Application of diffusion-alloyed powder ПР-Х18Н9 based on austenitic steel while using combined technology including plasma spraying and laser infusion makes it possible to obtain qualitative coatings with high operational characteristics. The coating has a homogeneous structure with characteristic dispersive finely-dendrite formation. While using various powder boronizing modes and laser processing it is possible to control a porosity  (0,23–4,70 %) because the given factor is considered as an inherited parameter and it is influenced not only by laser processing characteristics but by powder boronizing time. It has been established that  the least deformations and internal stresses are formed in the coating in the case when self-fluxing diffusion-alloyed powder has been applied for 3 hours.  It has been revealed that there is a sharp increase in micro-hardness at the depth of 150-400 µm from the surface for a specific energy of 100-300 J/mm2 regardless of boronizing time. Coatings can be successfully applied in industry because after laser infusion the required mechanical processing of parts will not worsen operational characteristics when less hard coating layer is removed. Tests of parts under conditions of dry sliding friction without lubrication  have shown an increase of wear-resistance by 3.0-3.2-fold while preserving corrosion-resistance.


2011 ◽  
Vol 189-193 ◽  
pp. 3633-3639
Author(s):  
Ming Der Jean ◽  
Yih Hwang Yang ◽  
Tzu Hsuan Chien

This study presented the desirability function based on Taguchi designed experiments to solve multiple responses statistical optimal problems for the tungsten carbide/cobalt (WC-Co) coatings of high-velocity-oxygen-fuel (HVOF) processes. The eight control factors based on L18 arrays were conducted and the multi-responses of wear-resistant coatings such as hardness, deposited thickness and wear rate were evaluated simultaneously in the desirability-based experiments. Based on desirability analysis, the optimal settings have been identified, and the impacts of control factors are determined by analysis of variance on the multi-responses. Further, a confirmation run was conducted to validate the tests. Experimental results have shown that the hardness increased by 16.61% and the deposited thickness improved by 10.50%, while the wear rate decreased by 34.03%. It was clear that confirmation tests are greatly improved by way of the desirability-based multi-responses on HVOF WC-Co experiments, and these findings achieved the desired values on wear-resistant coatings. The proposed procedure was applied at HVOF sprayed WC-Co experiments, and the implementation results demonstrated its feasibility and effectiveness to maximize hardness, make a target of deposited thickness value and minimize wear rate by a HVOF.


1990 ◽  
Vol 26 (9) ◽  
pp. 479-482
Author(s):  
E. E. Aver'yanov ◽  
R. M. Galimzyanov ◽  
K. Z. Gilyazova ◽  
V. A. Popov ◽  
A. V. Rabinovich ◽  
...  

1994 ◽  
Vol 30 (2) ◽  
pp. 340-345 ◽  
Author(s):  
V. Zieren ◽  
M. de Jongh ◽  
A.B. van Groenou ◽  
J.B.A. van Zon ◽  
P. Lasinski ◽  
...  

2010 ◽  
Vol 30 (9) ◽  
pp. 910-920 ◽  
Author(s):  
F. V. Kiryukhantsev-Korneev ◽  
N. A. Shirmanov ◽  
A. N. Sheveiko ◽  
E. A. Levashov ◽  
M. I. Petrzhik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document