Physico-chemical treatment of municipal wastewater. Coagulation-flocculation

1978 ◽  
Vol 12 (1) ◽  
pp. 35-40 ◽  
Author(s):  
J Leentvaar
2013 ◽  
Vol 9 (2) ◽  
pp. 166-173

The present study investigated tertiary physico-chemical treatment of the secondary effluent from the Chania municipal Wastewater Treatment Plant (WTP). Laboratory experiments were carried out with the aim of studying coagulation efficiency regarding reduction of turbidity, soluble COD and phosphorus both in a conventional Coagulation-Settling treatment scheme, as well as by means of Contact Filtration. The results showed that high doses of coagulants (0,5 mmol Me+3 l-1 or higher) are required to achieve significant removals of turbidity after settling. At these high doses, soluble COD can be removed by about 50%, while soluble Phosphorus by 80-95%. Ferric Chloride demonstrated slightly better removal ability as compared to Alum. The Chania WTP effluent was also treated by Contact Filtration, using a very low dose of coagulants, 0,1 mmol Me+3 l-1. Turbidity was removed by around 50%, while at this low coagulant dose removals of COD and Phosphorus were insignificant. Filtration was effective in the first 35cm of the filter bed. No significant differences were observed between the coagulants Alum and FeCl3 in the elimination of turbidity. Nevertheless, with the use of Alum a smaller filter headloss was observed, during the first two hours of continuous filtration, in comparison with the use of FeCl3 (nearly double). No difference was observed between the headloss developed at a filter depth of 5cm as compared to that developed at a depth of 70cm. This indicates that the headloss increase was due to the accumulation of suspended and colloidal solids within the first layers of the sand filter.


2013 ◽  
Vol 68 (8) ◽  
pp. 1715-1722 ◽  
Author(s):  
O. Santoro ◽  
T. Pastore ◽  
D. Santoro ◽  
F. Crapulli ◽  
M. Raisee ◽  
...  

In this paper, the physico-chemical treatment of municipal wastewater for the simultaneous removal of pollutant indicators (chemical oxygen demand (COD) and total coliforms) and organic contaminants (total phenols) was investigated and assessed. A secondary settled effluent was subjected to coagulation, disinfection and absorption in a multifunctional reactor by dosing, simultaneously, aluminum polychloride (dose range: 0–150 μL/L), natural zeolites (dose range: 0–150 mg/L), sodium hypochlorite (dose range: 0–7.5 mg/L) and powder activated carbon (dose range: 0–30 mg/L). The treatment process was optimized using computational fluid dynamics (CFD) and response surface methodology. Specifically, a Latin square technique was employed to generate 16 combinations of treating agent types and concentrations which were pilot tested on an 8 m3/h multifunctional reactor fed by a secondary effluent with COD and total coliform concentrations ranging from ≈20 to 120 mg/L and from 105 to 106 CFU/100 mL, respectively. Results were promising, indicating that removal yields up to 71% in COD and 5.4 log in total coliforms were obtained using an optimal combination of aluminum polychloride (dose range ≈ 84–106 μL/L), powder activated carbon ≈ 5 mg/L, natural zeolite (dose range ≈ 34–70 mg/L) and sodium hypochlorite (dose range ≈ 3.4–5.6 mg/L), with all treating agents playing a statistically significant role in determining the overall treatment performance. Remarkably, the combined process was also able to remove ≈ 50% of total phenols, a micropollutant known to be recalcitrant to conventional wastewater treatments.


1995 ◽  
Vol 31 (3-4) ◽  
pp. 73-82 ◽  
Author(s):  
Hallvard Ødegaard

An experimental investigation on flocculation/flotation for direct chemical treatment of municipal wastewater was carried out. It was demonstrated that flocculation units prior to flotation must be designed and operated differently to those used prior to sedimentation. Recommendations regarding design criteria both for the flocculation unit and the flotation unit are given.


2003 ◽  
Vol 3 (4) ◽  
pp. 145-152 ◽  
Author(s):  
H. Heinonen-Tanski ◽  
P. Juntunen ◽  
R. Rajala ◽  
E. Haume ◽  
A. Niemelä

Municipal treated wastewater has been tertiary treated in a pilot-scale rapid sand filter. The filtration process was improved by using polyaluminium coagulants. The sand-filtered water was further treated with one or two UV reactors. The quality changes of wastewater were measured with transmittance, total phosphorus, soluble phosphorus, and somatic coliphages, FRNA-coliphages, FC, enterococci and fecal clostridia. Sand filtration alone without coagulants improved slightly some physico-chemical parameters and it had almost no effect on content of microorganisms. If coagulants were used, the filtration was more effective. The reductions were 88-98% for microbial groups and 80% for total phosphorus. The wastewater would meet the requirements for bathing waters (2,000 FC/100 ml, EU, 1976). UV further improved the hygiene level; this type of treated wastewater could be used for unrestricted irrigation (2.2 TC/100 ml, US.EPA 1992). The improvement was better if coagulants were used. The price for tertiary treatment (filtration + UV) would have been 0.036 Euro/m3 according to prices in 2001 in 22 Mm3/a. The investment cost needed for the filtration unit was 0.020 Euro/m3 (6%/15a). Filtration with coagulants is recommended in spite of its costs, since the low transmittance of unfiltered wastewater impairs the efficiency of the UV treatment.


Biofouling ◽  
2021 ◽  
pp. 1-13
Author(s):  
Md. Furkanur Rahaman Mizan ◽  
Hye Ran Cho ◽  
Md. Ashrafudoulla ◽  
Junbin Cho ◽  
Md. Iqbal Hossain ◽  
...  

Chemosphere ◽  
2021 ◽  
pp. 130881
Author(s):  
Asfak Patel ◽  
Ambika Arkatkar ◽  
Srishti Singh ◽  
Alija Rabbani ◽  
Juan David Solorza Medina ◽  
...  

2002 ◽  
Vol 45 (12) ◽  
pp. 79-87 ◽  
Author(s):  
S. Kalyuzhnyi ◽  
V. Sklyar ◽  
A. Epov ◽  
I. Arkhipchenko ◽  
I. Barboulina ◽  
...  

Combined biological and physico-chemical treatment of filtered pig manure wastewater has been investigated on the pilot installation operated under ambient temperatures (15-20°C) and included: i) UASB-reactor for elimination of major part of COD from the filtrate; (ii) stripper of CO2 + fluidised bed crystallisator for phosphate (and partially ammonia) removal from the anaerobic effluents in the form of insoluble minerals - struvite (MgNH4PO4) and hydroxyapatite (Ca5(PO4)3OH); (iii) aerobic-anoxic biofilter for polishing the final effluent (elimination of remaining BOD and nutrients). Under overall hydraulic retention time (HRT) for the system of 7.8 days, the total COD, inorganic nitrogen and total phosphorous removals were 88, 65 and 74%, respectively. A decrease of the overall HRT to 4.25 days led to 91, 37 and 82% removals for total COD, inorganic nitrogen and total phosphorus removals, respectively. The approaches for further improvement of effluent quality are discussed.


Sign in / Sign up

Export Citation Format

Share Document