The circumferential-groove journal bearing considering cavitation and dynamic stability

Wear ◽  
1969 ◽  
Vol 14 (4) ◽  
pp. 303
Author(s):  
Mohammad Arif ◽  
Saurabh Kango ◽  
Dinesh Kumar Shukla

Abstract In the present study, the influence of various slip zone locations on the dynamic stability of finite hydrodynamic journal bearing lubricated with non-Newtonian and Newtonian lubricants has been investigated. Linearized equation of motion with free vibration of rigid rotor has been used to find the optimum location of the slip region with maximum stability margin limit. It has been observed that bearing with interface of slip and no-slip region near the upstream side of minimum film-thickness location is effective in improving the direct and cross stiffness coefficient, critical mass parameter, and critical whirling speed. The magnitude of dynamic performance parameters with slip effect is highly dependent on the rheology of lubricant. Shear-thinning lubricants combined with slip boundary condition shows higher dynamic stability as compared to the Newtonian lubricants under the conventional boundary condition. For all considered rheology of lubricants, the dynamic stability of bearing with slip effect is improving by increasing the eccentricity ratio.


2011 ◽  
Vol 54 (5) ◽  
pp. 806-823 ◽  
Author(s):  
Alex-Florian Cristea ◽  
Jean Bouyer ◽  
Michel Fillon ◽  
Mircea D. Pascovici

1977 ◽  
Vol 99 (4) ◽  
pp. 434-440 ◽  
Author(s):  
M. J. Cohen

The report presents an investigation of the dynamic stability behaviour of self-aligning journal gas bearings when subjected to arbitrary small disturbances from an initial condition of operational equilibrium. The method is based on an approach similar to the nonlinear-ph solution of the author for the quasi-static loading case but the equations of motion of the journal are the linearized forms for small motion in the two degrees (translational) of freedom of the journal center. The stability domains for the infinite journal bearing are presented for the whole of the eccentricity (ε) and rotational speed (Λ) ranges for any given bearing geometry, in the shape of stability boundaries in that domain. It is shown that a given bearing will be stable within a corridor in the (ε, Λ) parametral domain having as its lower bound the so called “half-speed” whirl stability boundary and as its upper bound another whirling instability at a higher characteristic (relative) frequency, the instability occurs generally at the higher eccentricities and lower rotational speeds.


Author(s):  
Guanghui Zhang ◽  
Shubo Yu ◽  
Zhansheng Liu ◽  
Kefan Xu ◽  
Yu Li

Abstract In order to increase the reliability of the oil lubricated journal bearing, the thermal characteristics of the plain journal bearing are investigated and optimized. In this paper, the steady state thermo-hydrodynamic analysis of the plain journal bearing with centered circumferential groove is studied by numerical simulation and experiments. The diameter of the journal bearing is 190mm, and the load of the bearing is 6150N, which is operated with the rotating speed of 5560 r/min. The flow characteristics including the temperature distribution in the clearance of the bearing are simulated by ANSYS CFX, where the Walther viscosity temperature relation and the cavitation effect are considered. The test rig for measuring the pressure and temperature distributing in established, which is driven by electrical motor and certain bearing load can be exerted on it. In the experiments, the temperature distribution of the bearing is measured by 10 temperature sensors, which is arranged on three cross sections along the axial direction. The temperature of the lubricating oil is obtained by the sensors on the shell of the bearing, which is installed in the Babbitt metal. In order to obtain the circumferential distribution of the temperature, the sensors locate at different circumferential angles. The influence of geometrical parameters on the temperature distribution is studied, including the bearing clearance, the bearing length and the groove width by numerical simulation and experiment. The bearing clearance ratios of 1.8‰ and 2.5‰ are compared, and as the increment of the bearing clearance ratio, the temperature of the bearing decreased, which is benefit from the flow mass into the bearing increases. For the bearing length increasing from 90mm to 94mm, the maximum temperature decreases about 3K. For the groove width varying from 20mm to 19mm and 18mm, the temperature of the bearing decreases. The comparison of the numerical results and experiments are presented, and they show similar tendency for the temperature distribution, but the difference of temperature values exists. Based on the results from variation of bearing clearance ratio, bearing length and groove width, the optimized parameters of the bearing are proposed by determining the groove width with 18mm, bearing length with 94mm and the bearing clearance ratio with 2.1‰. The thermo-hydrodynamic analysis from the CFD and the experiments for the optimized bearing are carried out. The results indicate that the thermal performance of the bearing is improved. Compared with original design of the bearing, the maximum temperature is reduced by approximately 5K for optimized design of the bearing.


Sign in / Sign up

Export Citation Format

Share Document