On sliding friction and wear of PEEK and its composites

Wear ◽  
1995 ◽  
Vol 181-183 ◽  
pp. 624-631 ◽  
Author(s):  
Z Lu
2015 ◽  
Vol 91 ◽  
pp. 151-159 ◽  
Author(s):  
Mamoun Fellah ◽  
Mohammed Abdul Samad ◽  
Mohamed Labaiz ◽  
Omar Assala ◽  
Alain Iost

Author(s):  
Mamoun Fellah ◽  
Linda Aissani

The aim of the present research was focused on the study of the effect of replacing vanadium by niobium and iron on the tribological behavior of Hot Isostatic Pressed (HIPed) titanium alloy (Ti-6Al-4V) biomaterial, using a ball-on-disk type Oscillating tribometer, under wet conditions using physiological solution conditions (Ringer solution) in accordance with the ASTMG 99, ISO 7148-1:2012, and ASTM G 133–95 standards. The tests were carried out under a normal load of 6 N, with an AISI 52100 grade steel ball as a counter face. The morphological changes and structural evolution of the nanoparticle powders using different milling times (2, 6, 12 and 18 h) were studied. The morphological characterization indicated that the particle and crystallite size continuously decreases with increasing milling time to reach the lowest value of 4 nm at 18 hours milling. The friction coefficient and wear rate were lower in the samples milled at 18 h (0.226, 0.297 and 0.423) and (0.66 x10-2, 0.87x10-2 and 1.51x10-2 µm3.N-1.µm-1) for Ti-6Al-4Fe, Ti-6Al-4Nb and Ti-6Al-4V, respectively. This improvement in friction and wear resistance is attributed to the grain refinement at 18 hour milling. The Ti-6Al-4Fe samples showed good tribological performance for all milling times


Author(s):  
W. H. Roberts

A new apparatus is described which enables continuous measurement to be made of the friction coefficient between surfaces sliding under boundary lubrication conditions in high-pressure (2700 lb/in2), high-temperature (up to 350°C) water environments. One specimen is held stationary under load against a moving specimen which may be either continuously rotated or reciprocated, linear rubbing speeds being low (of the order of a few centimetres per second). The design of the test section is such that any one of three geometrical configurations of specimen can be selected: piston-cylinder, journal-sleeve, or crossed-cylinders. The friction force transducers which have been developed for this work are described. Friction and wear results are presented for stainless steel (En 58E) sliding against itself, Inconel X, Nimonic 80A, chromium-plate and Deloro SF40, in the temperature range 20°-325°C.


Sign in / Sign up

Export Citation Format

Share Document