Analysis for local buckling capacity of cold-formed steel sections with web opening

1987 ◽  
Vol 26 (1-2) ◽  
pp. 275-282 ◽  
Author(s):  
K.S. Sivakumaran
1984 ◽  
Vol 11 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Robert Loov

Load tests were carried out on 36 stub column samples of cold-formed steel studs having 38.1 mm wide × 44.5 mm long holes punched through their webs, steel thicknesses of 1.21–2.01 mm, and overall section depths of 63–204 mm. Based on these tests a best-fit equation for the effective width of the unstiffened portion of the web beside the holes has been developed. Suggested design equations have been proposed. The test results support the present equation for the average yield stress [Formula: see text] in Canadian Standards Association Standard S136-1974 but the present code equations for unstiffened plates are unduly conservative when applied to the design of the web adjacent to openings of the size considered.


2015 ◽  
Vol 735 ◽  
pp. 80-84 ◽  
Author(s):  
Yeong Huei Lee ◽  
Shahrin Mohammad ◽  
Yee Ling Lee

This paper performs analytical and experimental investigation on the section properties of locally produced cold-formed steel sections. Effective width method given by BS EN1993-1-3 is used to calculate the section properties for two slender cold-formed steel channel sections, namely KS200C20 and KS250C20. Local buckling and distortional buckling are taken into account in the calculation. Effective width method has significantly reduced the full sectional area and thus gives a relative lower value for the sectional resistance of cold-formed steel channel sections. The analytical results is compared to manufacturer’s data and differences of not more than 3.37% is recorded. Experimental study on the flexural behaviour on the two types of cold-formed steel channel sections is carried out. The results show that BS EN1993-1-3 has good agreement with experimental results for flexural resistance that included local and distortional buckling consideration. It is concluded that effective width method by BS EN1993-1-3 is suitable to calculate the section properties of of locally produced cold-formed steel channel sections.


2015 ◽  
Vol 74 (4) ◽  
Author(s):  
Ker Shin Mu ◽  
Poi Ngian Shek ◽  
Arizu Sulaiman ◽  
Boon Cheik Tan

This paper presents a parametric study on compound cold-formed steel sections as flexural members. The compound members are used to sustain higher load and solve the problems of local buckling and lateral torsional buckling. The aim of this study is to investigate the strength of compound cold-formed steel section subjected to pure bending. Moment capacity of the compound section is calculated in accordance to Eurocode 3. The compound cold-formed steel sections proposed in this study are made up of two cold-formed steel C-section and hot-rolled plates. Steel plates with thickness of 3 mm to 8 mm are added to the cold-formed double C-section with the purpose to increase the bending capacity. From the comparison, moment capacity of compound sections give higher value as compared to cold-formed steel C-section with the comparison ratios range between 1.15 and 3.30. Results from the study show that compound cold-formed steel sections able to enhance the strength in resisting pure bending by adding steel plate at the flanges and web of the section. On the other hand, finite element modeling using ANSYS is carried out on two of the selected compound cold-formed steel sections and the results show good agreement with analytical results.


1987 ◽  
Vol 14 (4) ◽  
pp. 550-558 ◽  
Author(s):  
K.S. Sivakumaran

Load tests were carried out on 48 stub column specimens of cold-formed steel sections having flat widths of 82.5 and 144.7 mm, thicknesses of 1.60 and 1.29 mm, respectively, and various sizes and shapes of holes punched through their webs. This paper summarizes the experimental local buckling loads, ultimate loads, load–axial shortening relationships, and load–out-of-plane deflection relationships of the above specimens. Presently, the Canadian design code does not include any provisions in regards to the design of perforated cold-formed sections, owing to the lack of experimental results. A design approach using the present code "effective design width" for unstiffened elements is explored and the observations resulting from the comparison between the calculated values and the experimental values are given. The new American Iron and Steel Institute design specification gives an effective design width for cold-formed section with circular perforations. The appropriateness of this equation when applied to circular, square, and elongated openings is discussed. It appears that the design provisions of both codes are inadequate for the design of perforated cold-formed steel sections and further research is needed in this area. This is essential, considering the fact that, in practice, the cold-formed members often contain prepunched holes. Key words: axial load, buckling, building codes, cold-formed steel, effective design width, perforation, ultimate loads.


2019 ◽  
Vol 950 ◽  
pp. 85-89
Author(s):  
Adeline Ling Ying Ng ◽  
Zhi Yong Law

A series of connection with screw fasteners were tested to study the behavior of cold-formed steel moment connection. The test specimens included hot-rolled parallel flange channels, cold-formed lipped C-Channels, and self-drilling self-fastening screws. Two different lipped C-Channels and a various number of screws per connection were used in this study. The moment-rotation behavior, rotational rigidity, and the connection capacity differed with the number of screws. The connection behaved as a pinned connection when 4 screws were used. However, local buckling was observed in the cold-formed steel sections near the connection when 8, 10 and 14 screws were used. The connection test results were compared with theoretical results calculated in accordance to the Australian Standards. None of the connection tested could achieve the moment capacity of the section connected.


2015 ◽  
Vol 1111 ◽  
pp. 157-162 ◽  
Author(s):  
Ştefan Benzar ◽  
Viorel Ungureanu ◽  
Dan Dubină ◽  
Mircea Burcă

Corrugated web girders emerged in the past two decades. Their main advantages consists in the possibility to use slender webs avoiding the risk of premature local buckling. Consequently, higher moment capacity might be obtained increasing the beam depth with really thin webs, which are stiffened by the corrugations. Increased interest for this solution was observed for the main frames of single-storey steel buildings and steel bridges. A new solution was proposed at the Politehnica University of Timisoara, in which the beam is composed by a web of trapezoidal steel sheet and flanges of back-to-back lipped channel steel sections. This solution uses self-drilling screws for connecting flanges to the web and to ensure the continuity of the web as seam fasteners. Starting from this new technological solution the paper extends and investigates the use of spot welding as seam fastening to build the web, in order to increase the degree of automation of fabrication. Experimental work of specimens in shear having two or three layers of steel sheets connected by spot welding will be presented. The results will be implemented on a numerical model in order to study the behaviour of the beams presented above.


2011 ◽  
Vol 201-203 ◽  
pp. 2900-2903 ◽  
Author(s):  
Chui Huon Tina Ting ◽  
Hieng Ho Lau

Built-up sections are used to resist load induced in a structure when a single section is not sufficient to carry the design load for example roof trusses. In current North American Specification, the provision has been substantially taken from research in hot-rolled built-up members connected with bolts or welds [1]. The aim of this paper is to investigate on built-up back-to-back channels stub columns experimentally and theoretically using Effective Width Method and Direct Strength Method. Compression test was performed on 5 lipped channel and 5 back-to-back channels stub columns fabricated from cold-formed steel sheets of 1.2mm thicknesses. The test results indicated that local buckling is the dominant failure modes of stub columns. Therefore, Effective Width Method predicts the capacity of stub columns compared to Direct Strength Method. When compared to the average test results, results based on EWM are 5% higher while results based on DSM are 12% higher for stub column.


2010 ◽  
Vol 163-167 ◽  
pp. 651-654
Author(s):  
Tian Hua Zhou ◽  
Shao Feng Nie ◽  
Xiang Bin Liu ◽  
Guang Yi Li

18 specimens of cold-formed steel three limbs built-up section members are tested under axial compression load in this paper. The section forms are divided into two categories: A and B. Load-displacement (P-Δ) curves and failure characteristics of specimens are obtained. The results show that: As to section A members, the failure characteristics of LC, MC and SC series of specimens are flexural-torsional buckling, torsional buckling and distortional buckling, local buckling and distortional buckling. As to section B members, the failure characteristics of LC, MC series of specimens are flexural buckling, while local buckling and distortional buckling for members of SC series.


Sign in / Sign up

Export Citation Format

Share Document