Load capacity of uniformly compressed cold-formed steel section with punched web

1987 ◽  
Vol 14 (4) ◽  
pp. 550-558 ◽  
Author(s):  
K.S. Sivakumaran

Load tests were carried out on 48 stub column specimens of cold-formed steel sections having flat widths of 82.5 and 144.7 mm, thicknesses of 1.60 and 1.29 mm, respectively, and various sizes and shapes of holes punched through their webs. This paper summarizes the experimental local buckling loads, ultimate loads, load–axial shortening relationships, and load–out-of-plane deflection relationships of the above specimens. Presently, the Canadian design code does not include any provisions in regards to the design of perforated cold-formed sections, owing to the lack of experimental results. A design approach using the present code "effective design width" for unstiffened elements is explored and the observations resulting from the comparison between the calculated values and the experimental values are given. The new American Iron and Steel Institute design specification gives an effective design width for cold-formed section with circular perforations. The appropriateness of this equation when applied to circular, square, and elongated openings is discussed. It appears that the design provisions of both codes are inadequate for the design of perforated cold-formed steel sections and further research is needed in this area. This is essential, considering the fact that, in practice, the cold-formed members often contain prepunched holes. Key words: axial load, buckling, building codes, cold-formed steel, effective design width, perforation, ultimate loads.

1984 ◽  
Vol 11 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Robert Loov

Load tests were carried out on 36 stub column samples of cold-formed steel studs having 38.1 mm wide × 44.5 mm long holes punched through their webs, steel thicknesses of 1.21–2.01 mm, and overall section depths of 63–204 mm. Based on these tests a best-fit equation for the effective width of the unstiffened portion of the web beside the holes has been developed. Suggested design equations have been proposed. The test results support the present equation for the average yield stress [Formula: see text] in Canadian Standards Association Standard S136-1974 but the present code equations for unstiffened plates are unduly conservative when applied to the design of the web adjacent to openings of the size considered.


2011 ◽  
Vol 201-203 ◽  
pp. 2900-2903 ◽  
Author(s):  
Chui Huon Tina Ting ◽  
Hieng Ho Lau

Built-up sections are used to resist load induced in a structure when a single section is not sufficient to carry the design load for example roof trusses. In current North American Specification, the provision has been substantially taken from research in hot-rolled built-up members connected with bolts or welds [1]. The aim of this paper is to investigate on built-up back-to-back channels stub columns experimentally and theoretically using Effective Width Method and Direct Strength Method. Compression test was performed on 5 lipped channel and 5 back-to-back channels stub columns fabricated from cold-formed steel sheets of 1.2mm thicknesses. The test results indicated that local buckling is the dominant failure modes of stub columns. Therefore, Effective Width Method predicts the capacity of stub columns compared to Direct Strength Method. When compared to the average test results, results based on EWM are 5% higher while results based on DSM are 12% higher for stub column.


2018 ◽  
Vol 65 ◽  
pp. 08010
Author(s):  
Je Chenn Gan ◽  
Jee Hock Lim ◽  
Siong Kang Lim ◽  
Horng Sheng Lin

Applications of Cold-Formed Steel (CFS) are widely used in buildings, machinery and etc. Many researchers began the research of CFS as a roof truss system. It is required to increase the knowledge of the configurations of CFS roof trusses due to the uncertainty of the structural failures regarding the materials and rigidity of joints. The objective of this research is to investigate the effect of heel plate length to the ultimate load capacity of CFS roof truss system. Three different lengths of heel plate specimens were fabricated and subjected to concentrated loads until failure. The highest ultimate capacity for the experiment was 30 kN. The results showed that the increment of the length of the heel plate had slightly increased the ultimate capacity and strain. The increment of the length of the heel plate had increased the deflection of the bottom chords but decreased the deflection of the top chords. Local buckling of top chords adjacent to the heel plate was the primary failure mode for all the heel plate specimens.


2015 ◽  
Vol 735 ◽  
pp. 80-84 ◽  
Author(s):  
Yeong Huei Lee ◽  
Shahrin Mohammad ◽  
Yee Ling Lee

This paper performs analytical and experimental investigation on the section properties of locally produced cold-formed steel sections. Effective width method given by BS EN1993-1-3 is used to calculate the section properties for two slender cold-formed steel channel sections, namely KS200C20 and KS250C20. Local buckling and distortional buckling are taken into account in the calculation. Effective width method has significantly reduced the full sectional area and thus gives a relative lower value for the sectional resistance of cold-formed steel channel sections. The analytical results is compared to manufacturer’s data and differences of not more than 3.37% is recorded. Experimental study on the flexural behaviour on the two types of cold-formed steel channel sections is carried out. The results show that BS EN1993-1-3 has good agreement with experimental results for flexural resistance that included local and distortional buckling consideration. It is concluded that effective width method by BS EN1993-1-3 is suitable to calculate the section properties of of locally produced cold-formed steel channel sections.


2019 ◽  
Vol 10 (2) ◽  
pp. 20
Author(s):  
Ahmed Youssef Kamal ◽  
Nader Nabih Khalil

Lately, structural engineers use cold-formed steel sections (CFS) in buildings due to its light-weight and easy shaping. Encasing the cold-formed steel sections by concrete avoiding the structure elements some of its disadvantages especially buckling. This paper reports an experimental test program for beams with a multi-web cold-formed steel section encased by reinforced concrete. Eleven (full-scale) specimens have tested under mid-span concentrated load, the experimental test program designed to cover many cold-formed steel section variables such as (web number, web height, and the steel section length). Comparison between the experimental results for specimens with encased steel cold-formed section and that for reference beam have presented. The experimental results show that the cold-formed steel webs number has a noticeable influence on the structural behaviour of the beam, such as increasing the beam load capacity. The beam load capacity, failure mode and the beam ductility have analysed, and some preparatory criteria for a sufficient outline have presented.


2015 ◽  
Vol 74 (4) ◽  
Author(s):  
Ker Shin Mu ◽  
Poi Ngian Shek ◽  
Arizu Sulaiman ◽  
Boon Cheik Tan

This paper presents a parametric study on compound cold-formed steel sections as flexural members. The compound members are used to sustain higher load and solve the problems of local buckling and lateral torsional buckling. The aim of this study is to investigate the strength of compound cold-formed steel section subjected to pure bending. Moment capacity of the compound section is calculated in accordance to Eurocode 3. The compound cold-formed steel sections proposed in this study are made up of two cold-formed steel C-section and hot-rolled plates. Steel plates with thickness of 3 mm to 8 mm are added to the cold-formed double C-section with the purpose to increase the bending capacity. From the comparison, moment capacity of compound sections give higher value as compared to cold-formed steel C-section with the comparison ratios range between 1.15 and 3.30. Results from the study show that compound cold-formed steel sections able to enhance the strength in resisting pure bending by adding steel plate at the flanges and web of the section. On the other hand, finite element modeling using ANSYS is carried out on two of the selected compound cold-formed steel sections and the results show good agreement with analytical results.


2016 ◽  
Vol 10 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Viorel Ungureanu ◽  
Maria Kotełko ◽  
Jan Grudziecki

Abstract The Eurocode 3 concerning thin-walled steel members divides members subjected to compression into four classes, considering their ductility. The representatives of the class C4 are short bars, for which the load-capacity corresponds to the maximum compression stresses less than the yield stress. There are bars prone to local buckling in the elastic range and they do not have a real post-elastic capacity. The failure at ultimate stage of such members, either in compression or bending, always occurs by forming a local plastic mechanism. This fact suggests the possibility to use the local plastic mechanism to characterise the ultimate strength of such members. The present paper is based on previous studies and some latest investigations of the authors, as well as the literature collected data. It represents an attempt to study the plastic mechanisms for members in eccentric compression about minor axis and the evolution of plastic mechanisms, considering several types of lipped channel sections.


2012 ◽  
Author(s):  
Mahmood M. T. ◽  
C. M. Thong ◽  
C. S. Tan

Secara tradisi, kayu biasanya digunakan untuk kekuda bumbung sebagai bahan binaan. Walaubagaimanapun, kegunaan kayu tidak lagi mendapat sambutan kebelakangan ini disebabkan kos yang tinggi, bukan mesra alam sekitar disebabkan banyak pokok perlu ditebang, terdedah kepada serangan anai–anai dan keupayaan yang rendah dibandingkan dengan keluli. Keratan keluli terguling–sejuk telah dicadangkan di dalam kertas ini bagi pembinaan sistem bumbung kekuda sebagai pilihan lain daripada kekuda kayu. Kertas ini membincangkan keputusan uji kaji bagi cadangan keratan keluli terguling–sejuk yang dikeluarkan oleh pengeluar tempatan sebagaimana yang dinyatakan di dalam kod BS5950 Part 5:1987 bagi kegunaan sistem kekuda bumbung. Ujian–ujian ini juga adalah untuk menepati keperluan–keperluan yang telah digariskan oleh Jabatan Kerja Raya Malaysia. Keputusan–keputusan ujian dari uji kaji menunjukkan keputusan persetujuan yang baik dengan BS 5950 Part 5. Keputusan uji kaji merumuskan bahawa keratan keluli terguling sejuk keluaran tempatan dan sambungannya sesuai digunakan bagi sistem kekuda bumbung. Kata kunci: Keratan keluli terguling-sejuk, sistem kekuda bumbung, keupayaan keratan, keratan C, keratan topi Traditionally, timber is usually used for roof truss as a construction material. However, the use of timber is no longer popular recently due to the increase in cost, not environmental–friendly as more trees need to be cut, prone to termite attack, and lesser capacity compared with steel. Cold–formed steel section has been introduced in this paper for the construction roof truss system as an alternative to the timber truss. This paper describes experimental test results of the proposed cold–formed produced locally with the code of practice as prescribed by BS 5950 Part 5: 1987 for the use in roof truss system. The tests were also performed to meet the requirements that have been outlined by Public Works Department Malaysia. The experimental results showed good agreement with BS 5950 Part 5. From the study it can be concluded that the proposed locally produced cold–formed steel sections and the connections are suitable to be used in the roof truss system provided that the design values should not be more than the experimental values. Key words: Cold-formed steel section, roof truss system, section capacities, C-section, hat-section


2019 ◽  
Vol 950 ◽  
pp. 85-89
Author(s):  
Adeline Ling Ying Ng ◽  
Zhi Yong Law

A series of connection with screw fasteners were tested to study the behavior of cold-formed steel moment connection. The test specimens included hot-rolled parallel flange channels, cold-formed lipped C-Channels, and self-drilling self-fastening screws. Two different lipped C-Channels and a various number of screws per connection were used in this study. The moment-rotation behavior, rotational rigidity, and the connection capacity differed with the number of screws. The connection behaved as a pinned connection when 4 screws were used. However, local buckling was observed in the cold-formed steel sections near the connection when 8, 10 and 14 screws were used. The connection test results were compared with theoretical results calculated in accordance to the Australian Standards. None of the connection tested could achieve the moment capacity of the section connected.


Sign in / Sign up

Export Citation Format

Share Document