The specific interaction between plasminogen and fibrin. A physiological role of the lysine binding site in plasminogen

1977 ◽  
Vol 10 (2) ◽  
pp. 213-222 ◽  
Author(s):  
Björn Wiman ◽  
Per Wallén
1991 ◽  
Vol 11 (12) ◽  
pp. 6177-6184
Author(s):  
B Ducommun ◽  
P Brambilla ◽  
G Draetta

suc1+ encodes an essential cell cycle regulator of the fission yeast Schizosaccharomyces pombe. Its product, a 13-kDa protein, interacts with the Cdc2 protein kinase. Both positive and negative effects on cell cycle progression have been attributed to Suc1. To date, the exact mechanisms and the physiological role of the interaction between Suc1 and Cdc2 remain unclear. Here we have studied the molecular basis of this association. We show that Cdc2 can bind Suc1 or its mammalian homolog directly in the absence of any additional protein component. Using an alanine scanning mutagenesis method, we analyzed the interaction between Cdc2 and Suc1. We show that the integrity of several domains on the Cdc2 protein, including sites directly involved in catalytic activity, is required for binding to Suc1. Furthermore, Cdc2 mutant proteins unable to bind Suc1 (but able to bind cyclins) are nonfunctional when overexpressed in S. pombe, indicating that a specific interaction with Suc1 is required for Cdc2 function.


1991 ◽  
Vol 11 (12) ◽  
pp. 6177-6184 ◽  
Author(s):  
B Ducommun ◽  
P Brambilla ◽  
G Draetta

suc1+ encodes an essential cell cycle regulator of the fission yeast Schizosaccharomyces pombe. Its product, a 13-kDa protein, interacts with the Cdc2 protein kinase. Both positive and negative effects on cell cycle progression have been attributed to Suc1. To date, the exact mechanisms and the physiological role of the interaction between Suc1 and Cdc2 remain unclear. Here we have studied the molecular basis of this association. We show that Cdc2 can bind Suc1 or its mammalian homolog directly in the absence of any additional protein component. Using an alanine scanning mutagenesis method, we analyzed the interaction between Cdc2 and Suc1. We show that the integrity of several domains on the Cdc2 protein, including sites directly involved in catalytic activity, is required for binding to Suc1. Furthermore, Cdc2 mutant proteins unable to bind Suc1 (but able to bind cyclins) are nonfunctional when overexpressed in S. pombe, indicating that a specific interaction with Suc1 is required for Cdc2 function.


2006 ◽  
Vol 290 (3) ◽  
pp. R524-R528 ◽  
Author(s):  
Iva Dostanic-Larson ◽  
John N. Lorenz ◽  
James W. Van Huysse ◽  
Jon C. Neumann ◽  
Amy E. Moseley ◽  
...  

An interesting feature of Na+-K+-ATPase is that it contains four isoforms of the catalytic α-subunit, each with a tissue-specific distribution. Our laboratory has used gene targeting to define the functional role of the α1- and α2-isoforms. While knockout mice demonstrated the importance of the α1- and α2-isoforms for survival, the knockin mice, in which each isoform can be individually inhibited by ouabain and its function determined, demonstrated that both isoforms are regulators of cardiac muscle contractility. Another intriguing aspect of the Na+-K+-ATPase is that it contains a binding site for cardiac glycosides, such as digoxin. Conservation of this site suggests that it may have an in vivo role and that a natural ligand must exist to interact with this site. In fact, cardiac glycoside-like compounds have been observed in mammals. Our recent study demonstrates that the cardiac glycoside binding site of the Na+-K+-ATPase plays a role in the regulation of blood pressure and that it mediates both ouabain-induced and ACTH-induced hypertension in mice. Whereas chronic administration of ouabain or ACTH caused hypertension in wild-type mice, it had no effect on blood pressure in mice with a ouabain-resistant α2-isoform of Na+-K+-ATPase. Interestingly, animals with the ouabain-sensitive α1-isoform and a ouabain-resistant α2-isoform develop ACTH-induced hypertension to a greater extent than wild-type animals. Taken together, these results demonstrate that the cardiac glycoside binding of the Na+-K+-ATPase has a physiological role and suggests a function for a naturally occurring ligand that is stimulated by administration of ACTH.


2012 ◽  
Vol 139 (4) ◽  
pp. 295-304 ◽  
Author(s):  
Qiulin Tan ◽  
Brandon Ritzo ◽  
Kai Tian ◽  
Li-Qun Gu

Tetraethylammonium (TEA) is a potassium (K+) channel inhibitor that has been extensively used as a molecular probe to explore the structure of channels’ ion pathway. In this study, we identified that Leu70 of the virus-encoded potassium channel Kcv is a key amino acid that plays an important role in regulating the channel’s TEA sensitivity. Site-directed mutagenesis of Leu70 can change the TEA sensitivity by 1,000-fold from ∼100 µM to ∼100 mM. Because no compelling trends exist to explain this amino acid’s specific interaction with TEA, the role of Leu70 at the binding site is likely to ensure an optimal conformation of the extracellular mouth that confers high TEA affinity. We further assembled the subunits of mutant and wt-Kcv into a series of heterotetramers. The differences in these heterochannels suggest that all of the four subunits in a Kcv channel additively participate in the TEA binding, and each of the four residues at the binding site independently contributes an equal binding energy. We therefore can present a series of mutant/wild-type tetramer combinations that can probe TEA over three orders of magnitude in concentration. This study may give insight into the mechanism for the interaction between the potassium channel and its inhibitor.


2015 ◽  
Vol 14 (11) ◽  
pp. 1932-1940
Author(s):  
Hiroyuki Matsumoto ◽  
Tatsuo Iwasa ◽  
Tôru Yoshizawa

Rhodopsin regenerates by way of a non-covalent complex formation between the 11-cis retinal and opsin, rendering the β-ionone ring-binding pocket a distinct physiological role.


Metallomics ◽  
2012 ◽  
Vol 4 (5) ◽  
pp. 480 ◽  
Author(s):  
Ridvan Nepravishta ◽  
Francesca Polizio ◽  
Maurizio Paci ◽  
Sonia Melino

Diabetes ◽  
1997 ◽  
Vol 46 (3) ◽  
pp. 354-362 ◽  
Author(s):  
K. Matsuda ◽  
E. Araki ◽  
R. Yoshimura ◽  
K. Tsuruzoe ◽  
N. Furukawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document