Inhibitors of cytoskeletal function and signal transduction to study bacterial invasion

Author(s):  
Ilan Rosenshine ◽  
Sharon Ruschkowski ◽  
B.Brett Finlay
2016 ◽  
Vol 6 (5) ◽  
pp. 20160047 ◽  
Author(s):  
Till Bretschneider ◽  
Hans G. Othmer ◽  
Cornelis J. Weijer

Movement of cells and tissues is a basic biological process that is used in development, wound repair, the immune response to bacterial invasion, tumour formation and metastasis, and the search for food and mates. While some cell movement is random, directed movement stimulated by extracellular signals is our focus here. This involves a sequence of steps in which cells first detect extracellular chemical and/or mechanical signals via membrane receptors that activate signal transduction cascades and produce intracellular signals. These intracellular signals control the motile machinery of the cell and thereby determine the spatial localization of the sites of force generation needed to produce directed motion. Understanding how force generation within cells and mechanical interactions with their surroundings, including other cells, are controlled in space and time to produce cell-level movement is a major challenge, and involves many issues that are amenable to mathematical modelling.


Author(s):  
Bert Ph. M. Menco

Vertebrate olfactory receptor cells are specialized neurons that have numerous long tapering cilia. The distal parts of these cilia line the interface between the external odorous environment and the luminal surface of the olfactory epithelium. The length and number of these cilia results in a large surface area that presumably increases the chance that an odor molecule will meet a receptor cell. Advanced methods of cryoprepration and immuno-gold labeling were particularly useful to preserve the delicate ultrastructural and immunocytochemical features of olfactory cilia required for localization of molecules involved in olfactory signal-transduction. We subjected olfactory tissues to freeze-substitution in acetone (unfixed tissues) or methanol (fixed tissues) followed by low temperature embedding in Lowicryl K11M for that purpose. Tissue sections were immunoreacted with several antibodies against proteins that are presumably important in olfactory signal-transduction.


2020 ◽  
Vol 48 (2) ◽  
pp. 613-620
Author(s):  
Clara Ortegón Salas ◽  
Katharina Schneider ◽  
Christopher Horst Lillig ◽  
Manuela Gellert

Processing of and responding to various signals is an essential cellular function that influences survival, homeostasis, development, and cell death. Extra- or intracellular signals are perceived via specific receptors and transduced in a particular signalling pathway that results in a precise response. Reversible post-translational redox modifications of cysteinyl and methionyl residues have been characterised in countless signal transduction pathways. Due to the low reactivity of most sulfur-containing amino acid side chains with hydrogen peroxide, for instance, and also to ensure specificity, redox signalling requires catalysis, just like phosphorylation signalling requires kinases and phosphatases. While reducing enzymes of both cysteinyl- and methionyl-derivates have been characterised in great detail before, the discovery and characterisation of MICAL proteins evinced the first examples of specific oxidases in signal transduction. This article provides an overview of the functions of MICAL proteins in the redox regulation of cellular functions.


2001 ◽  
Vol 120 (5) ◽  
pp. A700-A700
Author(s):  
S WIMERMACKIN ◽  
R HOLMES ◽  
A WOLF ◽  
W LENCER ◽  
M JOBLING

2005 ◽  
Vol 173 (4S) ◽  
pp. 40-40
Author(s):  
Leo R. Doumanian ◽  
Alan S. Braverman ◽  
Amitt S. Tibb ◽  
Michael R. Ruggieri

2004 ◽  
Vol 171 (4S) ◽  
pp. 381-381
Author(s):  
Guiting Lin ◽  
Ching-Shwun Lin ◽  
Tom F. Lue ◽  
San Francisco

Sign in / Sign up

Export Citation Format

Share Document