Transposable elements generate novel spatial patterns of gene expression in antirrhinum majus

Cell ◽  
1986 ◽  
Vol 47 (2) ◽  
pp. 285-296 ◽  
Author(s):  
Enrico S. Coen ◽  
Rosemary Carpenter ◽  
Cathie Martin
1987 ◽  
pp. 167-180
Author(s):  
Enrico S. Coen ◽  
Tim P. Robbins ◽  
Andrew Hudson ◽  
Jorge Almeida ◽  
Cathie Martin ◽  
...  

1984 ◽  
Vol 49 (0) ◽  
pp. 355-361 ◽  
Author(s):  
H. Saedler ◽  
U. Bonas ◽  
A. Gierl ◽  
B.J. Harrison ◽  
R.B. Klosgen ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Julius Judd ◽  
Hayley Sanderson ◽  
Cédric Feschotte

Abstract Background Transposable elements are increasingly recognized as a source of cis-regulatory variation. Previous studies have revealed that transposons are often bound by transcription factors and some have been co-opted into functional enhancers regulating host gene expression. However, the process by which transposons mature into complex regulatory elements, like enhancers, remains poorly understood. To investigate this process, we examined the contribution of transposons to the cis-regulatory network controlling circadian gene expression in the mouse liver, a well-characterized network serving an important physiological function. Results ChIP-seq analyses reveal that transposons and other repeats contribute ~ 14% of the binding sites for core circadian regulators (CRs) including BMAL1, CLOCK, PER1/2, and CRY1/2, in the mouse liver. RSINE1, an abundant murine-specific SINE, is the only transposon family enriched for CR binding sites across all datasets. Sequence analyses and reporter assays reveal that the circadian regulatory activity of RSINE1 stems from the presence of imperfect CR binding motifs in the ancestral RSINE1 sequence. These motifs matured into canonical motifs through point mutations after transposition. Furthermore, maturation occurred preferentially within elements inserted in the proximity of ancestral CR binding sites. RSINE1 also acquired motifs that recruit nuclear receptors known to cooperate with CRs to regulate circadian gene expression specifically in the liver. Conclusions Our results suggest that the birth of enhancers from transposons is predicated both by the sequence of the transposon and by the cis-regulatory landscape surrounding their genomic integration site.


2019 ◽  
Author(s):  
Logan J. Everett ◽  
Wen Huang ◽  
Shanshan Zhou ◽  
Mary Anna Carbone ◽  
Richard F. Lyman ◽  
...  

SummaryA major challenge in modern biology is to understand how naturally occurring variation in DNA sequences affects complex organismal traits through networks of intermediate molecular phenotypes. Here, we performed deep RNA sequencing of 200 Drosophila Genetic Reference Panel inbred lines with complete genome sequences, and mapped expression quantitative trait loci for annotated genes, novel transcribed regions (most of which are long noncoding RNAs), transposable elements and microbial species. We identified host variants that affect expression of transposable elements, independent of their copy number, as well as microbiome composition. We constructed sex-specific expression quantitative trait locus regulatory networks. These networks are enriched for novel transcribed regions and target genes in heterochromatin and euchromatic regions of reduced recombination, and genes regulating transposable element expression. This study provides new insights regarding the role of natural genetic variation in regulating gene expression and generates testable hypotheses for future functional analyses.


2021 ◽  
Author(s):  
Gabriel Rech ◽  
Santiago Radio ◽  
Sara Guirao-Rico ◽  
Laura Aguilera ◽  
Vivien Horvath ◽  
...  

High quality reference genomes are crucial to understanding genome function, structure and evolution. The availability of reference genomes has allowed us to start inferring the role of genetic variation in biology, disease, and biodiversity conservation. However, analyses across organisms demonstrate that a single reference genome is not enough to capture the global genetic diversity present in populations. In this work, we generated 32 high-quality reference genomes for the well-known model species D. melanogaster and focused on the identification and analysis of transposable element variation as they are the most common type of structural variant. We showed that integrating the genetic variation across natural populations from five climatic regions increases the number of detected insertions by 58%. Moreover, 26% to 57% of the insertions identified using long-reads were missed by short-reads methods. We also identified hundreds of transposable elements associated with gene expression variation and new TE variants likely to contribute to adaptive evolution in this species. Our results highlight the importance of incorporating the genetic variation present in natural populations to genomic studies, which is essential if we are to understand how genomes function and evolve.


Sign in / Sign up

Export Citation Format

Share Document