X-ray induced degradation of regenerated cellulose membrane films

1995 ◽  
Vol 50 (1) ◽  
pp. 125-130 ◽  
Author(s):  
Yoshio Kawano ◽  
Amadeu J.M. Logarezzi
2004 ◽  
Vol 36 (6) ◽  
pp. 478-482 ◽  
Author(s):  
Kazuishi Sato ◽  
Hisaya Mochizuki ◽  
Kunihiko Okajima ◽  
Chihiro Yamane

Author(s):  
Michael E. Rock ◽  
Vern Kennedy ◽  
Bhaskar Deodhar ◽  
Thomas G. Stoebe

Cellophane is a composite polymer material, made up of regenerated cellulose (usually derived from wood pulp) which has been chemically transformed into "viscose", then formed into a (1 mil thickness) transparent sheet through an extrusion process. Although primarily produced for the food industry, cellophane's use as a separator material in the silver-zinc secondary battery system has proved to be another important market. We examined 14 samples from five producers of cellophane, which are being evaluated as the separator material for a silver/zinc alkaline battery system in an autonomous underwater target vehicle. Our intent was to identify structural and/or chemical differences between samples which could be related to the functional differences seen in the lifetimes of these various battery separators. The unused cellophane samples were examined by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Cellophane samples were cross sectioned (125-150 nm) using a diamond knife on a RMC MT-6000 ultramicrotome. Sections were examined in a Philips 430-T TEM at 200 kV. Analysis included morphological characterization, and EDS (for chemical composition). EDS was performed using an EDAX windowless detector.


Cellulose ◽  
2014 ◽  
Vol 21 (6) ◽  
pp. 4261-4270 ◽  
Author(s):  
Soon Wei Chook ◽  
Chin Hua Chia ◽  
Sarani Zakaria ◽  
Mohd Khan Ayob ◽  
Nay Ming Huang ◽  
...  

2014 ◽  
Vol 45 (3) ◽  
pp. 352-367 ◽  
Author(s):  
Lijun Qu ◽  
Mingwei Tian ◽  
Xiansheng Zhang ◽  
Xiaoqing Guo ◽  
Shifeng Zhu ◽  
...  

Author(s):  
Jianguo Liu ◽  
Juan Yang ◽  
Hai Xu ◽  
Hu Zhu ◽  
Jianbo Qu ◽  
...  

The aim of this work is to develop a membrane-based cost-effective process for the rapid isolation of immunoglobulin from chicken egg yolk. It was found that a single-stage ultrafiltration using a 100 kDa molecular weight cut-off regenerated cellulose membrane could be employed to isolate immunoglobulin from the crude feedstock. The effects of operational parameters (solution pH, ionic strength, stirring speed and permeate flux) on the transmission of immunoglobulin and the presence of impurity protein with molecular weight close to immunoglobulin were quantified using the parameter scanning ultrafiltration technique. Under optimized conditions, the purity of immunoglobulin obtained was about 85 percent after the single-stage ultrafiltration process, and the recovery of immunoglobulin from the feedstock was 91 percent.


Polymer ◽  
2006 ◽  
Vol 47 (8) ◽  
pp. 2839-2848 ◽  
Author(s):  
Xuming Chen ◽  
Christian Burger ◽  
Dufei Fang ◽  
Dong Ruan ◽  
Lina Zhang ◽  
...  

MEMBRANE ◽  
1991 ◽  
Vol 16 (6) ◽  
pp. 376-386 ◽  
Author(s):  
Gen Ishikawa ◽  
Tomoko Hirasaki ◽  
Sei-ichi Manabe ◽  
Sin-ichi Uematsu ◽  
Naoki Yamamoto

Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 506 ◽  
Author(s):  
Zhuangzhi Sun ◽  
Lu Yang ◽  
Sicheng Liu ◽  
Jintao Zhao ◽  
Zhiwei Hu ◽  
...  

In this paper, a kind of green triboelectric nano-generator based on natural degradable cellulose is proposed. Different kinds of regenerated cellulose composite layers are prepared by a blending doping method, and then assembled with poly(tetrafluoroethylene) (PTFE) thin films to form tribioelectric nanogenerator (TENG). The results show that the open circuit output voltage and the short circuit output current using a pure cellulose membrane is 7.925 V and 1.095 μA. After adding a certain amount of polyamide (PA6)/polyvinylidene fluoride (PVDF)/barium titanate (BaTiO3), the open circuit output voltage peak and the peak short circuit output current increases by 254.43% (to 20.155 V) and 548.04% (to 6.001 μA). The surface morphology, elemental composition and functional group of different cellulose layers are characterized by Scanning Electronic Microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and tested by the electrochemical analyze. Moreover, after multiple assembly and rectification processing, the electrical output performance shows that the peak value of open-circuit output voltage and the peak value of short circuit output current increases by 132.06% and 116.13%. Within 500 s of the charge-discharge test, the single peak charge reached 3.114 V, and the two peak charges reached 3.840 V. The results demonstrate that the nano-generator based on cellulose showed good stability and reliability, and the application and development of natural biomaterials represented by cellulose are greatly promoted in miniature electronic sensing area.


2013 ◽  
Vol 834-836 ◽  
pp. 555-558
Author(s):  
Jaranya Suksulap ◽  
Potjanart Suwanruji ◽  
Jantip Setthayanond

The cellulose film was prepared from regenerated cellulose fiber residue by dissolving the cellulose in sodium hydroxide solution at low temperature (-15 °C). The properties of the prepared film were investigated by tensile testing, Scanning Electron Microscope (SEM), X-ray Diffractometer (XRD) and also swelling ratio. Curcumin was added into the film with three different concentrations. The color strength of the curcumin-added film was evaluated and the color change of this film in different pH was also reported.


Vacuum ◽  
2011 ◽  
Vol 85 (12) ◽  
pp. 1067-1070 ◽  
Author(s):  
J. Benavente ◽  
M.I. Vázquez ◽  
J. Hierrezuelo ◽  
J.M. López-Romero

Sign in / Sign up

Export Citation Format

Share Document