A criterion for fatigue damage under combined bending and torsion based on the local stress-strain methodNie, H., Qiao, X. and Fan, W. Fatigue Fract. Eng. Mater. Struct. Feb. 1992 15 (2) 225–227

1993 ◽  
Vol 15 (2) ◽  
pp. 158-158
2020 ◽  
Vol 102 ◽  
pp. 102306 ◽  
Author(s):  
Jiayi Li ◽  
Yuanjiang Chang ◽  
Zixiang Xiu ◽  
Haolin Liu ◽  
Anti Xue ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2738
Author(s):  
Roland Pawliczek ◽  
Tadeusz Lagoda

The literature in the area of material fatigue indicates that the fatigue properties may change with the number of cycles. Researchers recommend taking this into account in fatigue life calculation algorithms. The results of simulation research presented in this paper relate to an algorithm for estimating the fatigue life of specimens subjected to block loading with a nonzero mean value. The problem of block loads using a novel calculation model is presented in this paper. The model takes into account the change in stress–strain curve parameters caused by mean strain. Simulation tests were performed for generated triangular waveforms of strains, where load blocks with changed mean strain values were applied. During the analysis, the degree of fatigue damage was compared. The results of calculations obtained for standard values of stress–strain parameters (for symmetric loads) and those determined, taking into account changes in the curve parameters, are compared and presented in this paper. It is shown that by neglecting the effect of the mean strain value on the K′ and n′ parameters and by considering only the parameters of the cyclic deformation curve for εm = 0 (symmetric loads), the ratio of the total degree of fatigue damage varies from 10% for εa = 0.2% to 3.5% for εa = 0.6%. The largest differences in the calculation for ratios of the partial degrees of fatigue damage were observed in relation to the reference case for the sequence of block n3, where εm = 0.4%. The simulation results show that higher mean strains change the properties of the material, and in such cases, it is necessary to take into account the influence of the mean value on the material response under block loads.


2021 ◽  
pp. 116828
Author(s):  
Akinobu Shibata ◽  
Takashi Yonemura ◽  
Yuji Momotani ◽  
Myeong-heom Park ◽  
Shusaku Takagi ◽  
...  

2008 ◽  
Vol 44-46 ◽  
pp. 111-118
Author(s):  
Wen Feng Tu ◽  
Xiao Gui Wang ◽  
Zeng Liang Gao

Based on two different cyclic plasticity models, fatigue crack growth for 16MnR steel specimens is simulated by using the same multi-axial fatigue damage criterion. The first plasticity model is the Jiang and Sehitoglu model and the second plasticity model is the simple nonlinear kinematic hardening model. The elastic-plastic stress-strain field near the crack tip is obtained respectively by using the two plasticity models. According to the same fatigue criterion, different fatigue damage near the crack tip is determined on the basis of stress-strain responses. The first plasticity model can accurately capture cyclic plasticity deformation behavior and predictions of fatigue crack growth rate are in agreement with the experimental results. However, lots of material constants in the model need to be fitted and more experimental tests should be conducted. The second plasticity model is very simple. The parameters of the model can be acquired easily by uniaxial fatigue tests. Compared with experimental data, the prediction results of fatigue crack growth rate lead to some errors by adopting the second plasticity model.


2004 ◽  
Vol 467-470 ◽  
pp. 329-334 ◽  
Author(s):  
A. Smith ◽  
A. Miroux ◽  
Haiwen Luo ◽  
Jilt Sietsma ◽  
Sybrand van der Zwaag

The softening kinetics of a 0.19 wt% C 1.5 wt% Mn steel deformed at two intercritical temperatures have been characterised using the stress relaxation technique. Recrystallisation of intercritical austenite has been modelled using a single grain model (Chen et al., 2002 [1]), whilst recovery of both intercritical austenite and ferrite has been modelled using a model in the literature [Verdier et al., 1999 [2]). The models are combined to predict the overall softening kinetics with a rule of mixtures formulation. Comparison of the model with experiment shows significant deviations. The reasons are discussed with reference to the mixture rule and to the local stress-strain distribution which exists in the deformed samples. A simple modification to the model is proposed which takes into account the effect of a local stress distribution in deformed austenite.


Sign in / Sign up

Export Citation Format

Share Document