Stress distribution in a coal seam ahead of the face studied by electrical resistance measurements (in Polish)

Author(s):  
Rui Wu ◽  
Penghui Zhang ◽  
Pinnaduwa H. S. W. Kulatilake ◽  
Hao Luo ◽  
Qingyuan He

AbstractAt present, non-pillar entry protection in longwall mining is mainly achieved through either the gob-side entry retaining (GER) procedure or the gob-side entry driving (GED) procedure. The GER procedure leads to difficulties in maintaining the roadway in mining both the previous and current panels. A narrow coal pillar about 5–7 m must be left in the GED procedure; therefore, it causes permanent loss of some coal. The gob-side pre-backfill driving (GPD) procedure effectively removes the wasting of coal resources that exists in the GED procedure and finds an alternative way to handle the roadway maintenance problem that exists in the GER procedure. The FLAC3D software was used to numerically investigate the stress and deformation distributions and failure of the rock mass surrounding the previous and current panel roadways during each stage of the GPD procedure which requires "twice excavation and mining". The results show that the stress distribution is slightly asymmetric around the previous panel roadway after the “primary excavation”. The stronger and stiffer backfill compared to the coal turned out to be the main bearing body of the previous panel roadway during the "primary mining". The highest vertical stresses of 32.6 and 23.1 MPa, compared to the in-situ stress of 10.5 MPa, appeared in the backfill wall and coal seam, respectively. After the "primary mining", the peak vertical stress under the coal seam at the floor level was slightly higher (18.1 MPa) than that under the backfill (17.8 MPa). After the "secondary excavation", the peak vertical stress under the coal seam at the floor level was slightly lower (18.7 MPa) than that under the backfill (19.8 MPa); the maximum floor heave and maximum roof sag of the current panel roadway were 252.9 and 322.1 mm, respectively. During the "secondary mining", the stress distribution in the rock mass surrounding the current panel roadway was mainly affected by the superposition of the front abutment pressure from the current panel and the side abutment pressure from the previous panel. The floor heave of the current panel roadway reached a maximum of 321.8 mm at 5 m ahead of the working face; the roof sag increased to 828.4 mm at the working face. The peak abutment pressure appeared alternately in the backfill and the coal seam during the whole procedure of "twice excavation and mining" of the GPD procedure. The backfill provided strong bearing capacity during all stages of the GPD procedure and exhibited reliable support for the roadway. The results provide scientific insight for engineering practice of the GPD procedure.


Author(s):  
Hongwei Wang ◽  
Ruiming Shi ◽  
Jiaqi Song ◽  
Zheng Tian ◽  
Daixin Deng ◽  
...  

2013 ◽  
Vol 295-298 ◽  
pp. 2980-2984
Author(s):  
Xiang Qian Wang ◽  
Da Fa Yin ◽  
Zhao Ning Gao ◽  
Qi Feng Zhao

Based on the geological conditions of 6# coal seam and 8# coal seam in Xieqiao Coal Mine, to determine reasonable entry layout of lower seam in multi-seam mining, alternate internal entry layout, alternate exterior entry layout and overlapping entry layout were put forward and simulated by FLAC3D. Then stress distribution and displacement characteristics of surrounding rock were analyzed in the three ways of entry layout, leading to the conclusion that alternate internal entry layout is a better choice for multi-seam mining, for which makes the entry located in stress reduce zone and reduces the influence of abutment pressure of upper coal seam mining to a certain extent,. And the mining practice of Xieqiao Coal Mine tested the results, which will offer a beneficial reference for entry layout with similar geological conditions in multi-seam mining.


1984 ◽  
Vol 14 (2) ◽  
pp. 177-180 ◽  
Author(s):  
H. Plene ◽  
R. G. Thompson ◽  
J. E. McIsaac ◽  
D. S. Fensom

Electrical resistance in young balsam fir (Abiesbalsamea (L.) Mill.) trees was inversely (nonlinear) correlated with specific volume increment, total foliar biomass, and the combined weight of the current and 1-year-old foliage. These relationships were stronger before budbreak than after. No relationship existed between concentrations of N, P, K, Ca, and Mg in the bark and wood collected around time of budbreak, and electrical resistance.


2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Bui MANH TUNG ◽  
Nguyen VAN QUANG ◽  
Nguyen PHI HUNG ◽  
Vo NGOC DUNG ◽  
Do HOANG HIEP

The extraction with higher cutting height for extra-thick seam is the new research orientation in longwall caving technology. Due to the increase of top coal thickness and of cutting height which leads to the change of cutting/caving height ratio, the rule of roof failure (including top coal caving) and the distribution of stress around the face alter correspondingly. This paper is based on the geological conditions of face 8102 of Tashan-DaTong mine, employing the numerical model by UDEC2D code, analysing the effect of cutting/caving height ratio on the law of stress distribution ahead of the face. When the ratio of cutting/caving height decreases and the cutting height increases, the results of the research have shown that: (i)- peak stress redistributes further ahead of the face and its value manifestly drops; (ii)- the plastic deformation ahead of face significant increases and the zone of plastic strain also expands. It is therefore concluded that the variation of cutting/caving height ratio results in the redistribution of roof pressure, which contributes to the control of roof failure and face stability.


2016 ◽  
Vol 879 ◽  
pp. 2318-2323 ◽  
Author(s):  
Pavel Zháňal ◽  
Petr Harcuba ◽  
Michal Hájek ◽  
Jana Šmilauerová ◽  
Jozef Veselý ◽  
...  

Metastable β titanium alloy Ti-15Mo was investigated in this study. In-situ electrical resistance and thermal expansion measurements conducted on solution treated material revealed influence of ongoing phase transitions on measured properties. The monotonicity of the dependence of electrical resistance on temperature changes at 225, 365 and 560 °C The thermal expansion deviates from linearity between 305 and 580 °C.


Sign in / Sign up

Export Citation Format

Share Document