Horizontal in situ stresses versus depth in the Canadian Shield at the underground research laboratory

Author(s):  
Yannick Wileveau ◽  
Kun Su ◽  
Mehdi Ghoreychi

A heating experiment named TER is being conducted with the objectives to identify the thermal properties, as well as to enhance the knowledge on THM processes in the Callovo-Oxfordian clay at the Meuse/Haute Marne Underground Research Laboratory (France). The in situ experiment has being switched on from early 2006. The heater, 3 m length, is designed to inject the power in the undisturbed zone at 6 m from the gallery wall. A heater packer is inflated in a metallic tubing. During the experiment, numerous sensors are emplaced in the surrounding rock and are experienced to monitor the evolution in temperature, pore-water pressure and deformation. The models and numerical codes applied should be validated by comparing the modeling results with the measurements. In parallel, some lab testing have been achieved in order to compare the results given with two different scales (cm up to meter scale). In this paper, we present a general description of the TER experiment with installation of the heater equipment and the surrounding instrumentation. Details of the in situ measurements of temperature, pore-pressure and strain evolutions are given for the several heating and cooling phases. The thermal conductivity and some predominant parameters in THM processes (as linear thermal expansion coefficient and permeability) will be discussed.


1990 ◽  
Vol 27 (5) ◽  
pp. 631-646 ◽  
Author(s):  
C. D. Martin

The Underground Research Laboratory access shaft was excavated from the surface to about the 185 m depth in jointed pink granite. Below this depth to the 443 m depth the shaft was excavated in massive grey granite. The grey granite is essentially unjointed, except for a major low-dipping thrust fault and associated minor splays. Overcoring, hydraulic fracturing, convergence measurements, microseismic monitoring, and observations of shaft-wall failure and core discing indicate that unusually high in situ stresses can be associated with large volumes of massive, unjointed granite at fairly shallow depth. The database of in situ stress measurements collected at the Underground Research Laboratory indicates that major geological features, such as thrust faults, can act as boundaries for in situ stress domains and that both the magnitude and direction of the in situ stress state can change when these geological features are traversed. Key words: in situ stress, anisotropy, stress domains, thrust faults, overcoring, hydraulic fracturing, convergence measurements, excavation damage zones.


Sign in / Sign up

Export Citation Format

Share Document