Self-similar distribution and properties of macroscopic fractures at depth in crystalline rocks in the Cajon Pass scientific drill hole

1996 ◽  
Vol 22 ◽  
pp. 187-193 ◽  
Author(s):  
Bryn Hubbard ◽  
Martin Sharp ◽  
Wendy J. Lawson

Seven basal ice facies have been defined on the basis of research at eleven glaciers in the western Alps. The concentration and texture of the debris incorporated in these facies are described. Grain-size distributions are characterised in terms of their: (i) mean size and dispersion, (ii) component Gaussian modes, and (iii) self-similarity.Firnified glacier ice contains low concentrations (≈0.2 g 1−1) of well-sorted and predominantly fine-grained debris that is not self-similar over the range of particle diameters assessed. In contrast, basal ice contains relatively high concentrations (≈4–4000 g 1−1 by facies) of polymodal (by size fraction against weight) debris, the texture of which is consistent with incorporation at the glacier bed. Analysis by grain-size against number of particles suggests that these basal facies debris textures are also self-similar. This apparent contradiction may be explained by the insensitivity of the assessment of self-similarity to variations in mass distribution. Comparison of typical size–weight with size–number distributions indicates that neither visual nor statistical assessment of the latter may be sufficiently rigorous to identify self-similarity.Apparent fractal dimensions may indicate the relative importance of fines in a debris distribution. Subglacially derived basal facies debris has a mean fractal dimension of 2.74. This value suggests an excess of fines relative to a self-similar distribution of cubes, which has a fractal dimension of 2.58. Subglacial sediments sampled from the forefield of Skalafellsjökull, Iceland, have fractal dimensions of 2.91 (A-horizon) and 2.81 (B-horizon). Debris from the A-horizon, which is interpreted as having been pervasively deformed, both most closely approaches self-similarity and has the highest fractal dimension of any of the sample groups analyzed.


2007 ◽  
Vol 52 (10) ◽  
pp. 1247-1251
Author(s):  
I. B. Krasnyuk ◽  
R. M. Taranets

2019 ◽  
Vol 79 (12) ◽  
Author(s):  
Shibendu Gupta Choudhury ◽  
Soumya Chakrabarti ◽  
Ananda Dasgupta ◽  
Narayan Banerjee

AbstractThe role of the Raychaudhuri equation in studying gravitational collapse is discussed. A self-similar distribution of a scalar field along with an imperfect fluid in a conformally flat spacetime is considered for the purpose. The general focusing condition is found out and verified against the available exact solutions. The connection between the Raychaudhuri equation and the critical phenomena is also explored.


2010 ◽  
pp. 19-29
Author(s):  
L. Zaninetti

The voids between galaxies are identified with the volumes of the Poisson Voronoi tessellation. Two new survival functions for the apparent radii of voids are derived. The sectional normalized area of the Poisson Voronoi tessellation is modelled by the Kiang function and by the exponential function. Two new survival functions with equivalent sectional radius are therefore derived; they represent an alternative to the survival function of voids between galaxies as given by the self-similar distribution. The spatial appearance of slices of the 2dF Galaxy Redshift Survey is simulated.


2007 ◽  
Vol 11 (2) ◽  
pp. 665-676 ◽  
Author(s):  
A. V. Dyskin

Abstract. In many cases, the critical state of systems that reached the threshold is characterised by self-similar pattern formation. We produce an example of pattern formation of this kind – formation of self-similar distribution of interacting fractures. Their formation starts with the crack growth due to the action of stress fluctuations. It is shown that even when the fluctuations have zero average the cracks generated by them could grow far beyond the scale of stress fluctuations. Further development of the fracture system is controlled by crack interaction leading to the emergence of self-similar crack distributions. As a result, the medium with fractures becomes discontinuous at any scale. We develop a continuum fractal mechanics to model its physical behaviour. We introduce a continuous sequence of continua of increasing scales covering this range of scales. The continuum of each scale is specified by the representative averaging volume elements of the corresponding size. These elements determine the resolution of the continuum. Each continuum hides the cracks of scales smaller than the volume element size while larger fractures are modelled explicitly. Using the developed formalism we investigate the stability of self-similar crack distributions with respect to crack growth and show that while the self-similar distribution of isotropically oriented cracks is stable, the distribution of parallel cracks is not. For the isotropically oriented cracks scaling of permeability is determined. For permeable materials (rocks) with self-similar crack distributions permeability scales as cube of crack radius. This property could be used for detecting this specific mechanism of formation of self-similar crack distributions.


Sign in / Sign up

Export Citation Format

Share Document